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Multimodal Graph-Based Reranking
for Web Image Search
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Abstract— This paper introduces a web image search
reranking approach that explores multiple modalities in a graph-
based learning scheme. Different from the conventional methods
that usually adopt a single modality or integrate multiple
modalities into a long feature vector, our approach can effectively
integrate the learning of relevance scores, weights of modalities,
and the distance metric and its scaling for each modality into
a unified scheme. In this way, the effects of different modalities
can be adaptively modulated and better reranking performance
can be achieved. We conduct experiments on a large dataset
that contains more than 1000 queries and 1 million images to
evaluate our approach. Experimental results demonstrate that
the proposed reranking approach is more robust than using
each individual modality, and it also performs better than many
existing methods.

Index Terms— Image search, multimodal graph-based
learning, reranking.

I. INTRODUCTION

COMMERCIAL image search engines, such as Google1,
Yahoo2 and Bing3, usually index web images using

textual information, such as images’ titles, ALT text and
surrounding texts on web pages. However, such text infor-
mation may not describe the content of images. This
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fact can severely degrade the search performance of web
images.

Several approaches have been investigated to boost the
performance of web image search. One approach is image
annotation, which aims to associate several keywords to an
image to describe its content based on machine learning and
computer vision techniques [2]–[4]. However, although great
progress has been made in the past few years, automatic
annotation of large-scale web images can still hardly achieve
satisfactory performance due to the well-known semantic gap.
Another approach is web image search reranking. Different
from annotation that aims to enhance the text indexing of web
images, reranking is applied to directly adjust search results
by mining images’ visual content [5]–[11].

Most image search reranking methods are developed based
on the following two assumptions:

1) The results after reranking should not change too much
from the initial ranking list. It means that we assume
text information is able to provide a reasonable ranking
result.

2) Visually similar images should be close in a ranking list.
It is usually called a visual consistency assumption.

A lot of reranking methods are built based on manifold dis-
covery [12], [13]. Manifold-based reranking approach assumes
that relevant images lie on a manifold in visual feature
space and it is usually accomplished by graph-based learning
methods. Therefore, we also call it graph-based reranking.
Generally, the approach constructs a graph where the vertices
are images and the edges reflect their pairwise similarities.
Then, based on the previously mentioned assumptions, a
regularization framework is formulated which contains the
following two terms: a graph regularizer that keeps the ranking
positions of visually similar images close, and a loss term that
insures the reranked results do not change too much from the
initial ranking list.

Although many different reranking algorithms have been
proposed, existing results show that reranking is not guar-
anteed to improve performance [14]–[17]. In fact, in several
cases search performance may even degrade after reranking.
One reason can be that the visual consistency assumption does
not hold for the employed feature space. The type of the most
effective features should vary across queries. For example,
for some queries that are related to color distribution, such as
sunset, sunrise and beach, color features will be useful. For
some queries like building and street, edge and texture features
will be more effective. It can be understood that the image
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manifolds for these queries exhibit in different feature
spaces [12]. Therefore, employing multimodal features can be
a solution. Note that multiple modalities are frequently used
to denote different types of media data, such as image and
text. But here a modality is viewed as a description of image
data, such as color, edge and texture. In our work, it can
be used with “feature set” interchangeably. Thus, employing
multimodal features means exploring multiple visual feature
sets instead of combining visual and textual information.
Using multimodal features can guarantee that the useful
features for different queries are contained, but there are still
several problems that need to be addressed, such as how
to adaptively integrate different modalities and discover the
most useful modalities.

Early fusion and late fusion are the two most popular
approaches for using multimodal features [18]. Early fusion
means concatenating multimodal features into a long feature
vector, and late fusion integrates the results obtained by
learning with each modality. But the early fusion approach
usually suffers from the “curse-of-dimensionality” problem.
For late fusion, the fused results may not be good since each
modality might be poor. In addition, it will be difficult to
assign appropriate weights to different modalities. Therefore,
in this work we propose a multimodal graph-based learning
approach that can adaptively integrate multiple modalities.
We simultaneously integrate the learning of relevance scores,
weights of modalities, and the distance metric and its scaling
of each modality (the scaling is used to estimate the similarity
of sample pairs in a modality) into a unified graph-based
learning scheme. Via adaptively modulating the weights
of different modalities, the proposed scheme is able to
optimally integrate these modalities for reranking. Figure 1
illustrates the web image search reranking scheme based on
the approach. We conduct experiments on a large dataset that
contains more than 1,000 queries and 1 million images to
evaluate our approach. Experimental results demonstrate that
the proposed reranking approach is much more robust than
using each individual modality. It also shows averagely better
performance than many other methods.

The contribution of this work is summarized as follows:
1) We propose a multimodal graph-based learning approach

for web image search reranking. It is able to integrate
multiple modalities into a graph-based learning frame-
work.

2) The proposed approach simultaneously learns the rel-
evance scores, weights of modalities, and the distance
metric and its scaling for each modality. Although
multiple modalities are involved, there are only two
parameters in our algorithm and this makes the approach
robust and flexible.

3) We conduct an empirical study on more than 1,000
queries and 1 million images. This compares favorably
than many existing works on reranking that conduct
experiments on small datasets.

The rest of this paper is organized as follows. In Section II,
we introduce related work, including visual search reranking,
multimodal fusion and graph-based learning. In Section III, we
introduce the formulation and the solution of our algorithm.

Fig. 1. Schematic illustration of the web image search reranking approach
based on multimodal graph-based learning.

In Section IV, we introduce experiments, including experimen-
tal settings, experimental results and discussion. Finally, we
conclude the paper in Section V.

II. RELATED WORK

A. Visual Search Reranking

Visual search reranking has been widely investigated for
improving the search performance of web images, photos
and other multimedia documents. The existing visual search
reranking efforts can mainly be classified into two categories
according to whether there are query examples available.
For the first category, which can be named example-based
reranking, there are several examples along with a text query.
Yan et al. [19] regard the query examples as pseudo relevant
samples and collect several bottom results in a ranking list
as pseudo irrelevant ones. An SVM model is learned based
on these samples to rerank search results. Natsev et al. [20]
improve the robustness of this approach by a bagging strategy.
They collect multiple pseudo irrelevant sample sets and then
generate different ranking lists accordingly. These ranking lists
are aggregated to generate final results. Liu et al. [21] identify
an optimal set of document pairs via an information theory
principle and a ranking list is directly recovered from this
pair set. These methods can effectively improve search perfor-
mance if good visual examples are provided. But they cannot
be used in the cases when there is no visual example available.

The other approach does not rely on query examples. It aims
to improve text-based search by mining the visual information
of images or videos. Kennedy and Chang [22] regard top and
bottom results in a ranking list as pseudo relevant and irrel-
evant samples respectively to discover the related concepts.
The detection results of the related concepts are then used as
high-level features in SVM to build classifiers for reranking.
Hsu et al. [14] formulate the reranking process as a random
walk over a context graph, where video stories are nodes
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and the edges between them are weighted by multimodal
similarities. Jing et al. [23] employ a random walk process to
rerank Google image search results by mining the visual sim-
ilarity of search results. Tian et al. [17] propose a graph-based
approach, which encodes the assumptions that the reranked
results do not change much from the initial ranking list and
the ranking positions of visually similar images are close. Yang
et al. [24] extract multiple features from each image and collect
a training set that contains several queries and labeled search
results. Reranking is then regarded as a supervised learning
task. Yao et al. [25] propose a method that can simultaneously
explore the visual content and textual information of web
images. Several methods have shown effectiveness in standard
challenges, such as ImageCLEF photo search and Wikipedia
retrieval tasks [26]–[28]. However, these methods all rely on
the adopted feature space. They will not work well if the
features cannot effectively describe the query semantics. In
this work, we investigate image search reranking with multiple
modalities that describe images’ visual content from different
aspects. By adaptively learning the weighting parameters, we
will show that our approach can effectively integrate multiple
modalities to boost ranking performance.

B. Multimodal Visual Feature Fusion

Existing studies reveal that the distances between samples
become increasingly similar when the dimension of adopted
feature space is high. This may introduce performance degra-
dation if we directly apply high-dimensional features to dis-
tance (or similarity)-based learning algorithms, such as the
graph-based method adopted in this work. To deal with this
issue, a natural method is to replace the high-dimensional
learning task by multiple low-dimensional learning tasks, i.e.,
separately applying different modalities to learning algorithms
and then fusing the results [29]. A modality can be viewed
as a description to image or video data, such as color,
edge, texture, audio, and text. This method is usually called
“multimodal fusion” or “multimodality learning”. Sometimes
it is also named “late fusion”, whereas the approach of
using concatenated high-dimensional global feature vector is
named “early fusion” [18]. With a labeled fusion set, the
task can actually be formulated as a learning issue. For
example, Iyengar et al. [30] and Snoek et al. [18] accomplish
the fusion with Support Vector Machine (SVM) models.
Yan et al. have studied the theoretical upper bound of linear
fusion [31]. Snoek et al. provide an empirical study to compare
early fusion and late fusion [18]. However, the early and late
fusion approaches have their own disadvantages, such as the
“curse of dimensionality” in early fusion and the difficulty in
determining appropriate weights for late fusion. Wang et al.
[32] propose an approach to integrate the graph representa-
tions generated from multiple modalities for video annotation.
Geng et al. [33] integrate the graph representations in a
kernelized learning approach. But these methods cannot be
applied to image search reranking and they also fail to discover
an appropriate distance metric for each modality.

Our work integrates multiple modalities into a graph-based
learning algorithm for reranking. In addition to the learning

of images’ relevance scores of and the weights of different
modalities, our approach further learns the distance metric for
each modality and its scaling, and this makes our method more
effective and flexible.

C. Graph-Based Learning

Graph-based learning methods have attracted great research
interests in the past years [34], [35]. In these methods, a graph
is constructed based on the given data, where vertices are
samples and edges reflect their similarities. They are usually
formulated in a regularization scheme with two terms. One
term is used to enforce the function to be smooth on the graph
and the other term is used to keep the function consistent
with prior information, such as the labeling information of
several samples. The algorithms can also be accomplished
by a random walk process. In [36], He et al. adopt a graph-
based method named manifold-ranking in image retrieval, and
Yuan et al. [37] then apply the same algorithm to video
annotation. Wang et al. develop a multi-graph learning method
for video annotation [32]. Several different graph-based learn-
ing approaches have been investigated for reranking [14],
[23], [17] (in the next section we will introduce the details).
However, there is no investigation of integrating multiple
modalities in graph-based learning for reranking. We will show
that our approach can achieve better performance by adaptively
learning the integration of multiple modalities and the distance
metric of each modality.

III. WEB IMAGE SEARCH RERANKING WITH

MULTIMODAL GRAPH-BASED LEARNING

In this section, we describe our reranking approach. We first
introduce the existing graph-based reranking methods with a
general regularization scheme. We then present our approach,
including initial relevance score estimation and multimodal
graph regularization. We also provide a probabilistic explana-
tion on our formulation, and after that we detail our solution of
the optimization problem. For clarity, we illustrate important
notations and definitions throughout this paper in Table I.

A. Graph-Based Reranking

We first follow [17] to define several terms in reranking.
Definition 1: A ranking score list, y = [y1, y2, . . . , yn]T, is

a vector of ranking scores, which corresponds to a sample set
X = {x1, x2, . . . , xn}.

Reranking aims to obtain a new ranking score list by
performing learning based on images’ visual content.

Definition 2: A reranking function h is defined as

y = h(X, ȳ) (1)

where ȳ = [ȳ1, ȳ2, . . . , ȳn]T is the initial ranking score list.
Generally, graph-based reranking can be formulated as a

regularization framework as follows

minimize Q(y, ȳ,X ) = R(y,X ) + λL(y, ȳ) (2)

Here R(.) is a regularization term that makes the ranking
scores of visually similar images close, the term L(.) is a loss
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TABLE I

NOTATIONS AND DEFINITIONS

Notation Definition

xi The ith image in a reranking task.

xk,i The kth modality of the i th image. That means xi =
[
xT

1,i , xT
2,i , . . . , xT

K ,i

]T
.

X X = {x1, x2, . . . , xn}. It is the image set in the reranking task.

ȳi The initial ranking score of xi .

ȳ ȳ = [ȳ1, ȳ2, . . . , ȳn ]T. It is the vector of the initial ranking scores.

yi The relevance score of xi, which needs to be estimated in reranking.

y y = [y1, y2, . . . , yn ]T. It is the vector of the relevance scores.

Wk The similarity matrix of images for the kth modality. Its (i, j)th element indicates the similarity of xi and x j in the kth modality.

L̃k The normalized graph Laplacian derived from the kth modality.

Ak The transformation matrix for the kth modality.

dk The dimensionality of the kth modality.

α The weight vector which is used to combine the K normalized graph Laplacians.

λ, ξ Positive parameters used to modulate the effects of regularizers [see (11)].

n The number of images.

K The number of modalities.

N The neighborhood size for sparsifying similarity matrices.

T The iteration time in the alternating optimization process for solving (11).

T1 The iteration time in the gradient descent process for solving Ak (see Algorithm 1).

T2 The iteration time in the coordinate descent process for solving α (see Section III-E3).

term that estimates the difference between y and ȳ, and W is
a similarity matrix in which Wij indicates the visual similarity
of xi and x j . The term R(r,X , W) usually employs one of
the following two forms:

1) Graph Laplacian regularizer, i.e.,

R(y,X ) =
∑
i, j

Wi j (yi − y j )
2 = yT Ly (3)

where L = D − W is called graph Laplacian. Here D is
a diagonal matrix and its (i, i)-th element is the sum of
the i -th row of W.

2) Normalized graph Laplacian regularizer, i.e.,

R(y,X ) =
∑
i, j

Wi j

(
yi

dii
− y j

d j j

)2

= yT L̃y (4)

where dii is the sum of the i -th row of W, and L̃ =
I−D−1/2WD−1/2 is named normalized graph Laplacian.

For the loss term, usually it estimates the difference between
two ranking lists. It can be defined based on either the
relevance scores or ranking scores. There are several different
choices, such as the squared difference and the hinge distance
of relevance scores. More details and discussion on the dis-
tance of ranking lists for reranking can be found in [17].

B. Proposed Multimodal Graph-Based Reranking Algorithm

We develop our approach based on normalized graph Lapla-
cian and squared loss. We choose normalized graph Laplacian
because existing studies have demonstrated its effectiveness
over graph Laplacian [17], and squared loss term is used

because it can make the optimization framework easy to solve.
First, we present the formulation with one modality. Next, we
extend it to multiple modalities.

Typically, the similarity between the i -th and the j -th
samples is estimated based on

Wij = exp

(
−−‖xi − x j‖2

2σ 2

)
(5)

where σ is the radius parameter of a Gaussian function that
converts distance to similarity. However, Euclidean distance
may not be appropriate as the most suitable distance metric
usually relies on feature distribution [38]–[41]. Therefore, we
replace the Euclidean distance metric with a Mahalanobis
distance metric in Eq. (5) which can be learned by an
optimization framework. The equation thus turns to

Wij = exp
(
−(xi − x j )

T M(xi − x j )
)

(6)

where M is a symmetric positive semi-definite real matrix.
We decompose M as M = AT A, where A is a d-by-d matrix.
We substitute it into Eq. (6). The equation then becomes

Wij = exp
(
−‖A(xi − x j )‖2

)
(7)

Actually it is equivalent to transforming each sample x to
Ax. That is, we assume that the manifold of images can be
better discovered in a transformed space.

Now we consider there are K modalities. Here we lin-
early combine the normalized graph Laplacian regularizers
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generated from different modalities

R(y,X , α, A1, A2, . . . , AK ) = yT L̃ky

=
K∑

k=1

∑
i j

αk Wk,i j

(
yi

dk,ii
− y j

dk, j j

)2

(8)

where
Wk,i j = exp

(
−‖Ak(xk,i − xk, j )‖2

)
(9)

and αk is the weight for the k-th modality. The weights satisfy
0 ≤ αk ≤ 1 and

∑K
k=1 αk = 1.

As previously mentioned, we integrate the learning of the
weights into our regularization framework in order to adap-
tively modulate the impacts of different modalities. Therefore,
the regularizer term turns to

R(y,X , α, A1, A2, . . . , AK )

=
K∑

k=1

∑
i, j

αk Wk,i j

(
yi

dk,ii
− y j

dk, j j

)2

+ ξ‖α‖2 (10)

Accordingly, our algorithm can be formulated as the fol-
lowing optimization problem

min
y,α,A1,A2,...,AK

Q(y,X , α, A1, A2, . . . , AK )

=
K∑

k=1

∑
i, j

αk Wk,i j

(
yi

dk,ii
− y j

dk, j j

)2

+ λ‖y − ȳ‖2 + ξ‖α‖2

s.t. 0 ≤ αk ≤ 1,

K∑
k=1

αk = 1 (11)

We can see that we need to solve the following vari-
ables: (1) y, i.e., the ranking scores to be estimated; (2) αk ,
i.e., the weights for combining the K modalities; and (3)
Ak, (1 ≤ k ≤ K ), i.e., the transform matrices for the K
modalities. Note that an appropriate scale of Ak for estimating
Wk will also be automatically determined, as there is no radius
parameter in Eq. (7). The radius parameter is usually very
sensitive for graph-based learning and it needs to be carefully
tuned [42], [43]. The elimination of the radius parameter by
automatically determining the scale of Ak is also a benefit of
our approach.

We first introduce the estimation of initial relevance scores
ȳ and the probabilistic explanation of our approach, and the
solution of the optimization problem will be explained later.

C. Initial Relevance Estimation

Since in reranking we only have original ranking lists
instead of quantized scores, a necessary step is to turn the
ranking positions into scores. Traditional methods usually
associate ȳi with the position τi using heuristic strategies, such
as ȳi = 1 − τi

n or ȳi = n − τi . In this work, we investigate
the relationship between ȳi and the position τi with a large
number of queries. Actually, we can define

ȳi = Eq∈Q[ŷ(q, τi )] (12)

where Q means the set of all possible queries, Eq∈Q means
the expectation over the query set Q, and ŷ(q, τi ) indi-
cates the relevance ground truth of the i -th search result for

query q . Therefore, the most intuitive approach is to estimate
ȳi by averaging ŷ(q, τi ) over a large query set. Figure 2
illustrates the results obtained by using more than 1,000
queries. Here the relevance score of each search result is
manually labeled to be 0, 1, or 2. Details about the queries
and the dataset will be introduced in Section IV. However,
as shown in Fig. 2, the averaged relevance score curve with
respect to the ranking position is not smooth enough even
after using more than 1,000 queries. A prior knowledge can
be that the expected relevance score should be decreasing with
respect to ranking position. Therefore, we further smooth the
curve with a parametric approach. We assume ȳi = a +be−i/c

and then fit this function with the non-smooth curve. In this
way, we estimate the parameters a, b, and c with mean squared
loss criterion. The values of a, b, and c are estimated to be
1.208, 0.4266, and 141.22, respectively. Figure 2 shows the
fitted curve, and we can see that it reasonably preserves the
original information.

D. Probabilistic Explanation

Now we provide a probabilistic explanation for our
approach. From a probabilistic perspective, we can derive
the optimal y, α, A1, A2, . . . , AK with the maximum posterior
probability given the samples X and initial relevance scores ȳ

{y, α, A1, A2, . . . , AK }∗
= arg max p(y, α, A1, A2, . . . , AK |X , ȳ) (13)

Following Bayes rule, the above equation can turn to

arg max p(y, A1, A2, . . . , AK |X , α)p(ȳ|X , y, α)p(α) (14)

We let

p(y, A1, A2, . . . , AK |X , α)

= 1

Z1
exp

⎛
⎝−

K∑
k=1

∑
i, j

αk Wk,i j

(
yi

dk,ii
− y j

dk, j j

)2
⎞
⎠ (15)

p(ȳ|X , y, α) = p(ȳ|X , y) = 1

Z2
exp

(
−‖y − ȳ‖2

1/λ

)
(16)

and

p(α) = 1

Z3
exp

(
−‖α − 1

K 1‖2

1/ξ

)
(17)

where Z1, Z2 and Z3 are normalizing constants which keep
the integral of the probability function to be 1, and 1 is a
vector that has all the entries to be 1. The first two terms have
been explained in [17]. In comparison with the probabilistic
scheme in [17], we integrate K normalized graph Laplacians
in the terms and add the third term. The third term actually
adds a Gaussian distribution prior to α, and its mean vector is
I
K , i.e., an average prior. By adding a constraint

∑K
k=1 αk = 1,

we then see that Eq. (14) and Eq. (11) are equivalent.

E. Solution

We adopt an alternating optimization to solve
Eq. (11). More specifically, we alternatively update y, α, and
Ak(k = 1, 2, . . . , K ) to optimize the objective.
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Fig. 2. Average relevance scores at different ranking positions.

1) Optimization of y: We fix α and Ak(k = 1, 2, . . . , K ),
and then we can easily derive that

y =
(

I + 1

λ

K∑
k=1

αk L̃k

)−1

ȳ (18)

We can see that, in comparison with general normalized
graph Laplacian based learning, the only difference is that the
K normalized graph Laplacian matrices have been linearly
combined with weights αk .

2) Optimization of Ak: Now we consider the optimization
of Ak . Considering y, α, and A1, A2, . . . Ak−1, Ak+1, . . . Ak

are fixed, then we derive the derivative of Q with respect to
Ak as

∂

∂Ak
Q(y,X , α, A1, A2, . . . , AK )

= αk
∂

∂Ak

∑
i, j

Wk,i j

(
yi

dk,ii
− y j

dk, j j

)2

= αk

∑
i j

h2
i j

∂Wk,i j

∂Ak
− W T

k,i j hi j

×
⎛
⎝ yi√

d3
k,ii

∂dk,ii

∂Ak
− y j√

d3
k, j j

∂dk, j j

∂Ak

⎞
⎠ (19)

where

hi j = yi

dk,ii
− y j

dk, j j
(20)

∂Wk,i j

∂Ak
= −2Wk,i j Ak(xk,i − xk, j )

T (xk,i − xk, j ) (21)

∂dk,ii

∂Ak
=

n∑
j=1

∂Wk,i j

∂Ak
(22)

Based on the derivative, we adopt a gradient descent process
to solve the optimization of Ak .

In the gradient descent process, we dynamically adapt
the step-size in order to accelerate the process while
guaranteeing its convergence. Denote by A(t)

k the val-
ues of Ak in the t-th turn of the iterative process.
If Q(y,X , α, A1, A2, . . . , A(t+1)

k , . . . , AK ) < Q(y,X , α, A1,

A2, . . . , A(t)
k , . . . , AK ), i.e., the cost function obtained after

gradient descent is reduced, then we double the step-size;
otherwise, we decrease the step-size and do not update Ak ,
i.e., A(t+1)

k = A(t)
k . The process is illustrated in Algorithm 1.

In this process, other variables besides Ak are fixed, and thus
we use Q(A(t)

k ) to denote the value of the objective function
for simplicity.

3) Optimization of α: Considering y and Ak(k =
1, 2, . . . , K ) are fixed, then Eq. (11) becomes

min
α

K∑
k=1

αk gk + ξ‖α‖2

s. t. 0 ≤ αk ≤ 1,

K∑
k=1

αk = 1 (23)

where gk = ∑
i, j Wk,i j

(
yi

dk,ii
− y j

dk, j j

)2 = yT L̃ky.
We adopt a coordinate descent method to solve Eq. (23).

In each iteration, we select two elements to update and fix
others. Suppose the i -th and the j -th elements are selected.
Since

∑K
k=1 αk = 1, αi + α j will not change in the process.

Therefore, the updating will follow the rule of⎧
⎪⎨
⎪⎩

α∗
i = 0, α∗

j = αi + α j , if 2ξ(gi + g j ) + (α j − αi ) ≤ 0
α∗

i = αi + α j , α
∗
j = 0, if 2ξ(gi + g j ) + (αi − α j ) ≤ 0

α∗
i = 2ξ(gi+g j )+(α j−αi )

4ξ , α∗
j = αi + α j − α∗

i , otherwise
(24)

We iterate the process for all pairs of elements in α. Since
the objective of Eq. (23) will not increase for each step, the
process is guaranteed to converge. Note that gk = yT L̃ky
actually measures the consistency of relevance scores and
visual similarity, and thus a smaller value of gk indicates the
smoothness of relevance scores in the k-th modality. Therefore,
Eq. (24) indicates that the modality in which the manifold is
more consistent with the relevance scores will be strengthen. In
addition, due to the constraints 0 ≤ αk ≤ 1 and

∑K
k=1 αk = 1,

several weights will be 0, i.e., our approach not only adaptively
integrates multiple modalities but also has certain ability of
feature selection.

The whole alternating optimization process is illustrated
in Algorithm 2. Since the objective is lower bounded by 0
and it will keep decreasing in each step, its convergence is
guaranteed.

F. Computational Cost

From the above solution process, we can see that its compu-
tational cost mainly contains three parts, which are for updat-
ing y, Ak(k = 1, 2, . . . , K ) and α, respectively. From Eq. (18)
we can see that the cost for updating y scales as O(n3). For
updating Ak , from the process in Section III-E 2) we can see
that the cost scales as O(T1n2d2

k ). For updating α, the cost
scales as O(T2 K 2). Therefore, the cost of the whole solution
process scales as O(T (n3 + T1n2 ∑K

k=1 d2
k + T2K 2)), where n
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Algorithm 1 Gradient Descent Process for Solving Ak

Step 1:
1.1: Set t to 0.
1.2: Set step-size parameter ηt to 1.
1.3: Set A(t)

k to a diagonal matrix I/σ . Here σ is determined
to be the one in the set {σ0/8, σ0/4, σ0/2, σ0, 2σ0, 4σ0, 8σ0}
that yields the minimum cost Q, where σ0 is the median
value of the pairwise Euclidean distances.
Step 2:

Let A(t+1)
k = A(t)

k − ηt
∂Q
∂Ak

|Ak=A(t)
k

.
Step 3:

If Q(A(t+1)
k ) < Q(A(t)

k ), ηt+1 = 2ηt ;
otherwise, A(t+1)

k = A(t)
k , ηt+1 = ηt/2.

Step 4:
Let t = t + 1. If t > T1, quit iteration and output Ak ,

otherwise go to step 2.

is the number of samples, dk is the dimensionality of the k-th
modality, K is the number of modalities, and T , T1 and T2
are the iteration times of alternating optimization, the gradient
descent process in Algorithm 1 and the coordinate descent
method for updating α, respectively. To further reduce the
computational cost, here we adopt a strategy. We sparsify Wk

by only keeping the N largest components in each row. This is
a widely-applied strategy in graph-based learning for reducing
computational cost while maintaining performance [42], [44].
For Eq. (18), we adopt an iterative method to solve it instead of
using matrix inverse, which is analogous to the method in [34].
In this way, the computational costs for updating y and Ak

become O(nN) and O(T1nNd2
k ), respectively. Therefore, the

overall computational cost is O(T (T1nN
∑K

k=1 d2
k + T2K 2)).

Here we also analyze the computational costs of several
other reranking methods for comparison. For the random walk
method proposed in [23] and the Bayesian reranking method
proposed in [17], it can be analyzed that the computational
costs are O(n2d + n3). In practice, the time costs are close to
our method if the values of n and d are not large. Then, we
consider the early fusion method that directly concatenates
all the features into a long feature vector. Its computational
cost will be O(T T1nNd2). Since

∑K
k=1 d2

k is much smaller
than d2, our method is more computationally efficient.

IV. EXPERIMENTS

In this section, we first introduce our experimental settings,
and then we present the experimental results that validate
the effectiveness of our approach. The experiments actually
contain two parts. In the first part, we will compare our
approach with those methods that only use a single modality.
In the second part, we compare our algorithm with several
existing methods that adopt all features.

A. Experimental Settings

To empirically evaluate the proposed approach, we conduct
experiments on the MSRA-MM Version 2.0 dataset [45],
which contains 1097 queries. The queries are obtained from a
query log of a commercial search engine and they are mainly

Algorithm 2 Alternating Optimization Process of the
Proposed Reranking Algorithm

Step 1: Initialization.
1.1: Set t to 0.
1.2: Set A(t)

1 , A(t)
2 , . . . , A(t)

K to diagonal matrices
I
σ1

, I
σ2

, . . . , I
σK

, respectively, where σk is the median
value of the pairwise Euclidean distances of the samples in
the k-th modality.

1.3: Construct the similarity matrices W(t)
1 , W(t)

2 , . . ., W(t)
K .

1.4: Compute D(t)
1 , D(t)

2 , . . . , D(t)
K and L̃(t)

1 , L̃(t)
2 , . . . , L̃(t)

K
accordingly.
Step 2: Relevance score update. Compute the optimal y
according to Eq. (18), i.e.,

y(t) =
(

I + 1

λ

K∑
k=1

αkL̃(t)
k

)−1

ȳ

Step 3: Distance metric update. Update A(t+1)
1 , A(t+1)

2 , . . .,
A(t+1)

k sequentially by Algorithm 1.
Step 4: Update the weights according to Eq. (24).
Step 5: After obtaining A(t+1)

k , update the similarity matrices
W(t+1)

k with the entries computed as Eq. (9). Then, compute
D(t+1) and L̃(t+1)

k accordingly.
Step 6: Let t = t + 1. If t > T , quit iteration and output
the relevance scores; otherwise, go to step 2.

hot queries that appear most frequently. In [45], the queries
have been manually classified into 9 categories. Table II
illustrates the number of queries for each category and several
examples. We choose this dataset to evaluate our approach for
the following reasons: 1) it is a real-world web image dataset;
2) it contains the original ranking information of a popular
search engine, and thus we can easily evaluate whether our
approach can improve the performance of the search engine;
3) it is publicly available; and 4) it contains more than 1,000
queries that cover widely. For each query, up to 1000 image
search results have been collected in the dataset, and there
are 1,011,738 images in total. Each image is labeled with a
3-level relevance, i.e., very relevant, relevant and irrelevant.
We use scores 2, 1 and 0 to indicate the three relevance
levels, respectively. The ambiguity of queries has also been
taken into consideration in the labeling process. For example,
if a query has multiple semantics, then an image will be
labeled as relevant if it is consistent with one of the semantics.
More details about the labeling process can be found in [45].
Figure 3 illustrates several example images of “Barak Obama”,
“Butterfly” and “ipod” with different relevance levels.

There are 7 global features extracted, including
1) 225-dimensional Block-wise color moments. Each

image is split into 5-by-5 blocks, and 9-dimensional
color moment features are extracted from each block.

2) 64-dimensional HSV color histogram. A 64-dimensional
histogram feature vector is extracted in HSV color space
for each image.

3) 144-dimensional Color autocorrelogram. HSV color
moments are quantized into 36 bins with 4 different
pixels pair distances.
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TABLE II

EXAMPLES AND THE NUMBER OF QUERIES OF EACH

CATEGORY IN OUR DATASET

Category Number of queries Examples

Animal 100 Alligator, Bat, Cattle

Cartoon 92 Air gear, Final fantasy

Event 78 Olympic, Wedding, WWE

Object 295 Airplane, Bed, Toy

People 68 Girls, Snowman, Baby

Person 40 Tom Hanks, Will Smith

Scene 48 Dersert, Rainbow

Time08 88 Barack Obama, Steve Jobs

Misc 288 Japan, Titanic, Adidas

Fig. 3. Several example images with different relevance levels to Barack
Obama, Butterfly, and ipod, respectively.

4) 256-dimensional RGB color histogram. A 256-
dimensional histogram feature vector is extracted in
RGB color space.

5) 75-dimensional Edge distribution histogram. Each image
is divided into 5 blocks and 15-dimensional EDH fea-
tures are extracted.

6) 128-dimensional Wavelet texture. 128-dimensional fea-
tures are extracted using the mean and standard deviation
of the energy distribution of each sub-band at different
levels.

7) 7-dimensional Face features. The features include the
number of faces, the ratio of face areas and the position
of the largest face region.

More details about the features can be found in [45].
We adopt NDCG [46] as the performance evaluation mea-

sure. The NDCG measure is computed as

N DCG@P = Z P

P∑
i=1

2l(i) − 1

log(i + 1)
(25)

where P is the considered depth, l(i) is the relevance level
of the i -th image and Z P is a normalization constant that is
chosen to let the optimal ranking’s NDCG score to be 1.

B. On the Integration of Multiple Modalities

In this part, we compare our approach that inte-
grates all modalities with the methods that use only an
individual modality. We denote the proposed method
as “MGL” (multimodal graph-based learning) and use
“MGL-CM”, “MGL-HSV”, “MGL-CORR”, “MGL-RGB”,

“MGL-EDH”, “MGL-Wavelet” and “MGL-Face” to denote
the methods that only use the seven modalities, respectively.

For the proposed “MGL” method, there are two parameters,
i.e., λ and ξ (see Eq. (11)). We tune the two parameters based
on an additional small dataset. Specifically, we jointly tune the
two parameters to optimize the reranking performance of the
“MGL” method on the MSRA-MM Version 1.0 dataset [45],
which contains 68 queries. Since there is no overlap between
the MSRA-MM Version 1.0 and 2.0 queries, there will be no
over-fitting effect. For the other seven methods, there is only
one parameter, i.e., λ. We also tune the parameter based on the
MSRA-MM Version 1.0 dataset. The neighborhood size N is
set to 20. For the iteration times T , T1 and T2, we set them to
5, 10 and 10, respectively (in our experiments we found that
these values can lead to a well convergence of the alternating
optimization process).

Table III illustrates the average NDCG@100 measurements
obtained by different methods for each category of queries.
Here we have also illustrated the NDCG@100 measurements
of the original ranking lists and we regard them as “Baseline”
results. From the average results we can see that nearly all the
methods can effectively improve the baseline results, except
“MGL-Face”. This is because the 7-dimensional face-relative
features are not informative enough and thus the reranking
introduces performance degradation. But they are still useful
by integrating them with other features to work together. The
“MGL” approach that integrates all the modalities achieves the
best results. While all the average NDCG@100 measurements
are all below 0.8, it can achieve a measurement of 0.816.

To further analyze the results, we consider the improvement
levels brought by each reranking method. Table IV illus-
trates the distribution of the relative improvements brought
by each reranking method. From the results we can see
that several queries can get encouraging improvements while
several others have degraded performance. This is a well-
known phenomenon, i.e., reranking will not always help
in improving performance [8], [47]. The “MGL” approach
demonstrates the most robust performance. For 82.7% of the
queries, the “MGL” approach can improve the original ranking
lists. This compares favorably with the other methods that use
an individual modality. For 23.7% of the queries, the relative
improvements are above 20%.

C. On the Comparison of Different Reranking Approaches

We then compare the proposed “MGL” approach with
several existing reranking approaches, including:

1) Baseline, i.e., the original search results without
reranking.

2) The information bottleneck based clustering method
in [14]. The reranking approach adopts a pseudo-
relevance feedback and information bottleneck
clustering over visual features with the help of a
smoothed initial ranking. The method is denoted as
“Clustering”.

3) The random walk method proposed in [23], which
estimates the relevance scores of images by performing
a random walk. The method is denoted as “Random
Walk”.
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TABLE III

COMPARISON OF THE AVERAGE NDCG@100 MEASUREMENTS OBTAINED BY INTEGRATING ALL MODALITIES AND USING

ONLY AN INDIVIDUAL MODALITY. FROM THE RESULTS WE CAN SEE THAT THE MGL, WHICH INTEGRATES MULTIPLE MODALITIES,

OUTPERFORMS THE OTHER METHODS THAT USE AN INDIVIDUAL MODALITY

���������Category
Method

Baseline MGL-CM MGL-HSV MGL-CORR MGL-RGB MGL-EDH MGL-Wavelet MGL-Face MGL

Animal 0.734 0.746 0.741 0.765 0.729 0.742 0.750 0.743 0.791

Cartoon 0.807 0.827 0.829 0.849 0.825 0.837 0.831 0.820 0.865

Event 0.788 0.785 0.788 0.806 0.787 0.789 0.8 0.783 0.811

Object 0.703 0.719 0.705 0.718 0.696 0.692 0.717 0.708 0.745

People 0.714 0.711 0.706 0.728 0.696 0.708 0.724 0.669 0.742

Person 0.908 0.920 0.924 0.927 0.917 0.924 0.924 0.926 0.940

Scene 0.703 0.742 0.736 0.758 0.732 0.716 0.744 0.715 0.792

Time08 0.830 0.846 0.835 0.855 0.829 0.833 0.825 0.608 0.870

Misc 0.736 0.760 0.754 0.764 0.747 0.756 0.757 0.725 0.790

Mean 0.769 0.784 0.780 0.797 0.773 0.777 0.786 0.744 0.816

TABLE IV

DISTRIBUTION OF RELATIVE PERFORMANCE IMPROVEMENTS BY EACH RERANKING METHOD AMONG THE 1096 QUERIES

�����������Improvement
Method

MGL-CM MGL-HSV MGL-CORR MGL-RGB MGL-EDH MGL-Wavelet MGL-Face MGL

Below −20% 0.121 0.134 0.123 0.161 0.158 0.110 0.054 0.070

−20% to −10% 0.105 0.098 0.082 0.107 0.087 0.095 0.058 0.048

−10% to −5% 0.068 0.086 0.075 0.073 0.083 0.069 0.058 0.024

−5% to 0 0.079 0.093 0.091 0.088 0.079 0.100 0.072 0.030

0 to 5% 0.276 0.231 0.264 0.234 0.256 0.275 0.639 0.186

5% to 10% 0.101 0.109 0.085 0.083 0.094 0.091 0.069 0.163

10% to 20% 0.110 0.102 0.130 0.126 0.115 0.119 0.031 0.204

Above 20% 0.141 0.148 0.151 0.130 0.130 0.142 0.018 0.274

4) Bayesian reranking proposed in [17]. We concatenate
all features into a long vector and then perform the
strength based method in [17]. The method is denoted
as “Bayesian”.

5) Graph-based reranking with concatenated features. That
is, we concatenate all the features into a long vector
and then perform the graph-based reranking shown in
Eq. (11) by setting K to 1. The method is denoted as
“Concatenated Features”.

6) Pseudo relevance feedback. Given a query, we use the
top 100 search results in the original ranking list as
positive samples, and then randomly collect 100 images
from the whole database and regard them as negative
samples. We then learn a support vector machine
classifier with RBF kernel based on these samples
and use the classifier to rerank the search results. The
method is denoted as “PRF”.

7) Late fusion with tuned weights. That means, we fuse the
results of “MGL-CM”, “MGL-HSV”, “MGL-CORR”,
“MGL-RGB”, “MGL-EDH”, “MGL-Wavelet” and
“MGL-Face”. The weights are tuned to their optimal
values based on the MSRA-MM Version 1.0 queries.
The method is denoted as “Late Fusion”.

8) Multimodal graph-based reranking with assigning
equivalent weights to all modalities. That means we fix

αi = 1/K . The method is denoted as “MGL (Equal
Weights)”.

9) Multimodal graph-based reranking with heuristic
weights assigned to different modalities. We assign the
weights that are proportional to the performance gains
in Table III, such that more effective modalities can
get higher weights. The method is denoted as “MGL
(Heuristic Weights)”.

Each of the above methods involves several parameters.
We tune all these parameters to their optimal values on the
MSRA-MM version 1.0 dataset, which is similar to the process
introduced in the above subsection. In this way, we can provide
a fair comparison for these algorithms.

Figure 4 demonstrates the top results obtained by differ-
ent methods for an example query amber. Table V illus-
trates the average NDCG@100 measurements obtained by
different methods for each category. From the results we
can see that the proposed “MGL” approach shows the
best average performance for each type of queries. This
demonstrates the robustness of this algorithm. In partic-
ular, we can see that the “Concatenated Features” only
achieves very limited performance improvement over the
“Baseline” results. This demonstrates that, although we have
a distance metric learning component that can somewhat
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Fig. 4. Top results in the original ranking list (baseline) and the reranked lists obtained by different methods for an example query amber. The proposed
MGL method obtains the best results; the top images are all relevant. The other methods contain at least one irrelevant image in the top results. (a) Baseline.
(b) Clustering. (c) Random walk. (d) Bayesian. (e) Concatenated features. (f) PRF. (g) Late fusion. (h) MGL (equal weights). (i) MGL (heuristic weights).
(j) MGL.

modulate the effects of different features, the graph-based
reranking still cannot well handle the high-dimensional fea-
tures. The “Late Fusion”, “MGL (Equal Weights)” and “MGL
(Heuristic Weights)” methods cannot achieve sufficiently good
performance because they are unable to adaptively modu-
late the effects of multiple modalities for different queries.
Although in the “MGL (Heuristic Weights)” method we have
set weights according to the performance gains of differ-
ent modalities in Table III, it is still not as reasonable
as the proposed approach as the description ability of a
modality should vary across queries. The “PRF” method is
the fastest as it only needs to train a classification model

with several pseudo positive and negative examples, but
we can see that it performs much worse than the pro-
posed “MGL” method. The “Bayesian” method performs
the second best among all the compared approaches. This
can be partially attributed to the fact that the “Bayesian”
method adopts a more reasonable loss term. The loss term
is built based on a preference strength and it is better
than the squared distance of relevance scores (see [17]). We
also compare the NDCG measures with different depths of
these methods. Figure 5 demonstrates the average NDCG@3,
NDCG@10, NDCG@20, NDCG@50 and NDCG@100 mea-
surements obtained by these methods, and we can see that
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TABLE V

COMPARISON OF THE AVERAGE NDCG@100 MEASUREMENTS OBTAINED BY DIFFERENT METHODS FOR EACH CATEGORY OF QUERIES

��������Category
Method

Baseline Clustering Random Bayesian Concatenated PRF Late Fusion MGL MGL MGL

Walk Features (Equal weights) (Heuristic weights)

Animal 0.734 0.759 0.753 0.773 0.724 0.750 0.758 0.768 0.773 0.791

Cartoon 0.807 0.828 0.827 0.844 0.819 0.829 0.831 0.83 0.84 0.865

Event 0.788 0.788 0.808 0.803 0.779 0.775 0.795 0.787 0.789 0.811

Object 0.703 0.717 0.721 0.731 0.708 0.708 0.715 0.728 0.733 0.745

People 0.714 0.710 0.732 0.724 0.716 0.715 0.715 0.717 0.724 0.742

Person 0.908 0.905 0.931 0.922 0.939 0.913 0.91 0.922 0.923 0.940

Scene 0.703 0.752 0.721 0.766 0.712 0.761 0.75 0.758 0.766 0.792

Time08 0.830 0.854 0.851 0.870 0.830 0.860 0.852 0.858 0.863 0.870

Misc 0.736 0.753 0.755 0.767 0.757 0.758 0.758 0.757 0.76 0.790

Mean 0.769 0.785 0.789 0.800 0.776 0.785 0.787 0.792 0.797 0.816

Fig. 5. NDCG measurements with different depths obtained by the compared reranking methods.

the proposed “MGL” approach consistently achieves the best
performance.

We further perform a statistical significance test to verify
whether the superiority of the “MGL” method is statistically
significant. The p values of the t-test of the “MGL” method
over the other methods, including those that use only an
individual modality, are shown in Table VI. From the results
we can see that the superiority of the “MGL” method is
statistically significant.

D. On the Parameters λ and ξ

Finally, we also test the sensitivity of the two parameters
λ and ξ , which are used in the proposed algorithm. We
first set ξ to 1 and vary λ from 0.001 to 1. Figure 6(a)
demonstrates the performance curve with respect to the vari-
ation of λ. We then set λ to 0.01 and vary ξ from 0.01
to 100. Figure 6(b) demonstrates the performance curve
with respect to the variation of ξ . Here we also illustrate
the performance of the other nine methods, i.e., “Baseline”,
“Clustering”, “Random Walk”, “Bayesian”, “Concatenated
Features”, “PRF”, “Late Fusion”, “MGL (Equal Weights)”
and “MGL (Heuristic Weights)”, for comparison. From the
results we can see that the performance of our approach will
not significantly degrade when the two parameters vary in a

TABLE VI

p VALUES OF THE SIGNIFICANCE TEST

Comparison p

MGL versus MGL-CM 4.35 × e−10

MGL versus MGL-HSV 5.75 × e−8

MGL versus MGL-CORR 0.002

MGL versus MGL-RGB 1.11 × e−16

MGL versus MGL-EDH 2.62 × e−10

MGL versus MGL-Wavelet 1.59 × e−7

MGL versus MGL-Face 1.01 × e−16

MGL versus Baseline 1.2 × e−12

MGL versus Clustering 1.49 × e−7

MGL versus Random Walk 2.54 × e−10

MGL versus Bayesian 1.08 × e−5

MGL versus Concatenated Features 1.73 × e−11

MGL versus PRF 7.34 × e−8

MGL versus Late Fusion 7.39 × e−9

MGL versus MGL (Equal Weights) 1.06 × e−6

MGL versus MGL (Heuristic Weights) 5.38 × e−6

fairly wide range and it can keep outperforming the other nine
methods.
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(a)

(b)

Fig. 6. Illustration of the effects of the parameters λ and ξ in reranking.
(a) Reranking performance variation when λ varies from 0.001 to 1.
(b) Reranking performance variation when ξ varies from 0.01 to 100.

V. CONCLUSION

This paper introduces a web image search reranking
approach that explores multiple modalities in a graph-based
learning scheme. The approach simultaneously learns rele-
vance scores, weights of modalities, and the distance metric
and its scaling for each modality. To test the performance of
the proposed approach, we have conducted experiments on
a dataset that contains 1,096 queries. The effectiveness of
integrating multiple modalities has been demonstrated. It is
demonstrated that the proposed approach not only achieves
better average results but also shows more robustness than
the methods that use only an individual modality. We have
also compared our approach with several existing reranking
methods, and results also demonstrate the superiority of our
approach.

We only consider search relevance in this work, but actually
diversity is also an important aspect for search performance.
In fact, after performing reranking, we can further have a
diversification process to enhance the diversity of top search
results, such as by using the method proposed in [48].
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