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DEEP NETS ARE BIG

Canziani et al, “An Analysis of Deep Neural Network Models for Practical Applications”, arXiv 2016.

Low power devices



SOLUTION: QUANTIZED/LOW-
PRECISION NETWORKS

BinaryConnect [Courbariaux NIPS’15]
BinaryNet [Hubara NIPS’16] 

XNOR-Net [Rastegar, ECCV’16] 
DoReFA-Net [Zhou, arXiv’16]

DeepCompression[Han, ICLR’16]
……
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Advantages
•FAST & hardware friendly:  no multiplications 
•Low storage costs
•Low power consumption



HOW TO USE QUANTIZED NETS?

Quantizatio
n

Can we train quantized models on resource-constrained devices?

Train using HPC

Inference on low power devices



HOW TO TRAIN QUANTIZED NETS?
Non-quantized:  Stochastic Gradient Descent

Fully-quantized:  Stochastic rounding [Gupta ICML’15]

wk+1 = wk �Q[↵rf(wk)]

wk+1 = wk � ↵rf(wk)

Advantage:  no floating-point weights



Non-quantized:  Stochastic gradient descent

Fully-quantized:  Stochastic rounding [Gupta ICML’15]

wk+1 = wk �Q[↵rf(wk)]

wk+1 = wk � ↵rf(wk)

Semi-quantized:  BinaryConnect [Courbariaux NIPS’15]

wk+1 = wk � ↵rf(Q[wk])

Disadvantage:  still requires floating-point weights

QNN[Hubara, arXiv’16]   XNOR-Net [Rastegar, ECCV’16] 
DoReFA-Net [Zhou, arXiv’16] and etc…very popular

HOW TO TRAIN QUANTIZED NETS?



EXPERIMENT RESULT
Train CNNs (VGG-Net, ResNets, Wide-RseNet) with binary weight on CIFAR-10/100

Deterministic Rounding
Stochastic Rounding

BinaryConnect
Full-Precision

The SR method cannot beat BC, why?



THIS TALK

Why are we able to train quantized nets at all?

Why does training require floating point weights? 

Can we prove that SGD solves this difficult combinatorial problem?

Why can’t we train on embedded systems using SR? 

 Goal:  develop principled framework for training 
quantized nets



CONVERGENCE UNDER 
CONVEXITY ASSUMPTIONS



Theorem 2 Assume that      is     -strongly convex and the learning rates are 

given by                    .    Let      bound the gradient magnitude.  Then

F µ

CONVERGENCE THEORY FOR 
STOCHASTIC ROUNDING
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SR converges until it reaches an “accuracy floor”, which is determined by the 
quantization error    .�
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Theorem 1 Assume that      is     -strongly convex and the learning rates are 

given by                    .    Let      bound the gradient magnitude.  Then

F µ

BC converges until it reaches an “accuracy floor”, which is determined by the 
quantization error     and       (0 if     is quadratic).� FL2

CONVERGENCE THEORY FOR 
BINARYCONNECT

G

L2 is a Lipschitz constants for the Hessian 

Corollary:  BC finds exact solutions to quadratic problems



But this can’t be whole story.

What can we say about the bad behavior of SR
 on non-convex problems?

The answer has to do with exploration vs exploitation



FLOATING POINT
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FLOATING POINT
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WHAT’S WRONG?
Floating Point / Binary Connect

Exploration
Exploitation

Exploration

Exploitation
Shrink 

Learning rate

Stochastic Rounding

Exploration
Exploitation

ExplorationShrink 
Learning rate

Exploitation



MARKOV CHAIN 
INTERPRETATION

“Weight space”

w1

w2

wk

wk+1

wk+1 = wk �Q[↵rf(wk)]



MARKOV CHAIN 
INTERPRETATION

w1

w2

wk

wk+1

wk+1 = wk �Q[↵rf(wk)]

Long term dynamics governed by the equilibrium distribution
⇡↵
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Theorem (Kushner and Clark, 1978)

LONG TERM BEHAVIOR

Classical (floating-point) SGD converges to a stationary points
almost surely

This result also applies to Binary Connect!

lim
k!1

krf(wk)k = 0

The stationary distribution concentrates on
stationary points.

In other words…

These algorithms have an exploitation phase!



WHAT ABOUT STOCHASTIC 
ROUNDING?

Fully discrete stochastic rounding does not concentrate
on stationary points

Theorem   Let          denote the distribution function of the 
kth entry in the stochastic gradient          .  If                         , 
and        has non-zero mass on both the positive and negative 
reals, then there exists a distribution    , with              

    

px,k
r̃f(w)

R1
⌫ px,k(z) dz < C/⌫2

px,k
⇡̃

lim
↵!0

⇡↵ = ⇡̃ .

Furthermore,       is not concentrated on stationary points.⇡̃

Assumptions are weak enough for neural nets!



WHAT ABOUT STOCHASTIC 
ROUNDING?

Fully discrete stochastic rounding stops exploring as the 
learning rate gets small

Theorem    The mixing time       of the Markov chain induced 
by stochastic rounding SGD satisfies

    

M↵

lim
↵!0

M↵ = 1 .

Exploration slows down, but exploitation never 
happens!



SUMMARY

Convergence theory for quantized nets

Convex problems: methods converge to until an “accuracy floor” is 
reached that depends on the discretization width.

Non-convex problems: fully quantized methods lack the important 
annealing properties enjoyed by floating-point methods.



Towards a deeper Understanding of Training Quantized Networks

Questions/Comments?
Thank you!

Hao Li*, Soham De*, Zheng Xu, Christoph Studer, Hanan Samet, Tom Goldstein


