

TOWARDS A DEEPER UNDERSTANDING OF TRAINING QUANTIZED NETWORKS

Hao Li*, Soham De*, Zheng Xu, Christoph Studer, Hanan Samet, Tom Goldstein

DEEP NETS ARE BIG

Canziani et al, "An Analysis of Deep Neural Network Models for Practical Applications", arXiv 2016.

SOLUTION: QUANTIZED/LOW-PRECISION NETWORKS

X1 ± 1 X2 ± 1 $f(\sum_{i=1}^{n} W_i X_i)$ γ ± 1 X3

BinaryConnect [Courbariaux NIPS'15] BinaryNet [Hubara NIPS'16] XNOR-Net [Rastegar, ECCV'16] DoReFA-Net [Zhou, arXiv'16] DeepCompression[Han, ICLR'16]

.

Advantages

- •FAST & hardware friendly: no multiplications
- Low storage costs
- Low power consumption

HOW TO USE QUANTIZED NETS?

Train using HPC

Quantizatio

n

Inference on low power devices

Can we train quantized models on resource-constrained devices?

HOW TO TRAIN QUANTIZED NETS?

Non-quantized: Stochastic Gradient Descent $w^{k+1} = w^k - \alpha \nabla f(w^k)$

Fully-quantized: Stochastic rounding [Gupta ICML'15] $w^{k+1} = w^k - Q[\alpha \nabla f(w^k)]$

HOW TO TRAIN QUANTIZED NETS?

Non-quantized: Stochastic gradient descent

$$w^{k+1} = w^k - \alpha \nabla f(w^k)$$

Fully-quantized: Stochastic rounding [Gupta ICML'15] $w^{k+1} = w^k - Q[\alpha \nabla f(w^k)]$

Semi-quantized: BinaryConnect [Courbariaux NIPS'15]

$$w^{k+1} = w^k - \alpha \nabla f(Q[w^k])$$

very popular

QNN[Hubara, arXiv'16] XNOR-Net [Rastegar, ECCV'16] DoReFA-Net [Zhou, arXiv'16] and etc...

Disadvantage: still requires floating-point weights

EXPERIMENT RESULT

Train CNNs (VGG-Net, ResNets, Wide-RseNet) with binary weight on CIFAR-10/100

The SR method cannot beat BC, why?

THISTALK

Goal: develop principled framework for training quantized nets

Why are we able to train quantized nets at all?

Can we prove that SGD solves this difficult combinatorial problem?

Why does training require floating point weights?

Why can't we train on embedded systems using SR?

CONVERGENCE UNDER CONVEXITY ASSUMPTIONS

CONVERGENCE THEORY FOR STOCHASTIC ROUNDING

Theorem 2 Assume that F is μ -strongly convex and the learning rates are given by $\alpha_t = \frac{1}{\mu(t+1)}$. Let G bound the gradient magnitude. Then $\mathbb{E}[F(\bar{w}^T) - F(w^*)] \leq \frac{(1 + \log(T+1))G^2(1 + \Delta^{-1})}{2\mu T} + \frac{\sqrt{d}\Delta G}{2}$

SR converges until it reaches an "accuracy floor", which is determined by the quantization error Δ .

CONVERGENCE THEORY FOR BINARYCONNECT

 L_2 is a Lipschitz constants for the Hessian

Theorem I Assume that F is μ -strongly convex and the learning rates are given by $\alpha_t = \frac{1}{\mu(t+1)}$. Let G bound the gradient magnitude. Then $\mathbb{E}[F(\bar{w}^T) - F(w^*)] \leq \frac{(1 + \log(T+1))G^2}{2\mu T} + \frac{DL_2\sqrt{d\Delta}}{2}$

BC converges until it reaches an "accuracy floor", which is determined by the quantization error Δ and L_2 (0 if F is quadratic). Corollary: BC finds **exact** solutions to quadratic problems

But this can't be whole story.

What can we say about the bad behavior of SR on non-convex problems?

The answer has to do with exploration vs exploitation

Learning rate = 1

Learning rate = 0.1

Learning rate = 0.01

Learning rate = 0.001

Learning rate = 1

Learning rate = 0.1

Learning rate = 0.01

Learning rate = 0.001

Learning rate = 0.0001

WHAT'S WRONG?

Floating Point / Binary Connect

Stochastic Rounding

MARKOV CHAIN INTERPRETATION

"Weight space"

Long term dynamics governed by the equilibrium distribution π_{lpha}

MARKOV CHAIN INTERPRETATION

equilibrium distribution

LONGTERM BEHAVIOR

Theorem (Kushner and Clark, 1978)

Classical (floating-point) SGD converges to a stationary points almost surely $\frac{1}{k} = \frac{1}{k} \int_{-\infty}^{\infty} c(-k) dk$

$$\lim_{k \to \infty} \|\nabla f(w^k)\| = 0$$

This result also applies to Binary Connect!

In other words...

The **stationary distribution concentrates** on stationary points.

These algorithms have an exploitation phase!

WHAT ABOUT STOCHASTIC ROUNDING?

Fully discrete stochastic rounding **does not concentrate** on stationary points

Theorem Let $p_{x,k}$ denote the distribution function of the kth entry in the stochastic gradient $\tilde{\nabla}f(w)$. If $\int_{\nu}^{\infty} p_{x,k}(z) dz < C/\nu^2$, and $p_{x,k}$ has non-zero mass on both the positive and negative reals, then there exists a distribution $\tilde{\pi}$, with

$$\lim_{\alpha \to 0} \pi_{\alpha} = \tilde{\pi}$$

Furthermore, $\tilde{\pi}$ is not concentrated on stationary points.

Assumptions are weak enough for neural nets!

WHAT ABOUT STOCHASTIC ROUNDING?

Fully discrete stochastic rounding **stops exploring** as the learning rate gets small

Theorem The *mixing time* M_{α} of the Markov chain induced by stochastic rounding SGD satisfies

 $\lim_{\alpha \to 0} M_{\alpha} = \infty.$

Exploration slows down, but exploitation never happens!

SUMMARY

Convergence theory for quantized nets

Convex problems: methods converge to until an "accuracy floor" is reached that depends on the discretization width.

Non-convex problems: fully quantized methods lack the important annealing properties enjoyed by floating-point methods.

Thank you! Questions/Comments?

Towards a deeper Understanding of Training Quantized Networks Hao Li*, Soham De*, Zheng Xu, Christoph Studer, Hanan Samet, Tom Goldstein

