

Motivation

- Low computation cost of CNNs is a crucial factor for mobile applications and cloud services.
- Convolutional layers dominate computation and storage costs in state-of-art CNNs ^[1].
- Pruning small weights ^[2] mostly reduces the storage cost of parameters from FC layers and require sparse convolutions.

Pruning filters and their corresponding feature maps is a natural way to reduce the computation and storage cost of conv layers without introducing sparse kernels.

Contributions

- Reduce the inference computation cost of CNNs by pruning filters avoiding the need for sparse convolution libraries.
- ✓ Simple criterion for filter selection, without examining each feature map's importance ^[3,4].
- ✓ Prune multiple filters together and retrain once, avoiding iterative pruning and retraining.

Determine Filters' Importance

- > For each conv layer, we measure each filter's relative importance by its absolute weight sum $\sum |\mathcal{F}_{i,j}|$, i.e., its ℓ_1 -norm. This value also represents the average magnitude of its weights.
- \succ Filters with small weights tend to produce feature maps with weak activations.
- > Pruning the *smallest* filters works better in comparison with pruning the same number of *random* or *largest* filters.

Filters are ranked by their abs weight sum. (Left) The y-axis is the filter weight sum divided by the max value among filters in that layer. (Right) Visualization of filters in the first conv layer of VGG-16 trained on CIFAR-10.

Pruning Filters for Efficient ConvNets

Hao Li¹, Asim Kadav², Igor Durdanovic², Hanan Samet¹, Hans Peter Graf² University of Maryland¹, NEC Labs America²

Determine Single Layer's Sensitivity to Pruning CIFAR10, VGG-16, pruned smallest filters CIFAR10, VGG-16, prune smallest filters, retrain 20 epochs • conv 1 64 conv • conv 2 64 • conv ••• conv 3 128 conv 3 • conv 4 128 ← conv 4 • conv 5 256 🗕 conv 5 • conv 6 256 - 🛑 conv 6 • conv 7 256 • conv 7 • • conv 8 512 conv 8 • • conv 9 512 • • conv 9 • • conv 10 512

• • conv_12 512 • • conv_13 512 20 80 Filters Pruned Away(%)

Pruning the smallest filters of single layer

Pruning ratios

• • conv 11 512

- Layers with the same input sizes often have similar sensitivity to pruning. We use the same pruning ratio for these layers to avoid tuning layer-specific meta-parameters.
- For layers that are sensitive to pruning, we use a small pruning rate or completely skip pruning them.

Pruning filters across consecutive layers

- X Independent pruning determines filters to be pruned at one layer independent of other layers.
- ✓ Greedy pruning does not count kernels connected with the previously pruned feature maps during filter selection.

residual block Pruning residual blocks with projection shortcut

- The first layer of the residual block can be pruned without restrictions.
- The filters to be pruned in the second conv layer of the residual blocks is determined by the pruning result of the shortcut projection.

Retrain Pruned Networks

Instead of *iterative* pruning and retraining, we adopt a *one-shot* pruning and retraining strategy ($\sim \frac{1}{4}$ of the original training time).

5th International Conference on Learning Representations (ICLR) 2017, Toulon, France

Regain accuracy by retraining

Model VGG-16 VGG-16-pruned-A VGG-16-pruned-A scratch train ResNet-56 ResNet-56-pruned-A ResNet-56-pruned-B ResNet-56-pruned-B scratch tra ResNet-110 ResNet-110-pruned-A ResNet-110-pruned-B ResNet-110-pruned-B scratch ResNet-34 ResNet-34-pruned-A ResNet-34-pruned-B ResNet-34-pruned-C

Overall results

- significant loss in accuracy.
- pruned model.

Sensitivity analysis

[1] He et al. Deep Residual Learning for Image Recognition. CVPR 2017 [2] Han et al. Learning both Weights and Connections for Efficient Neural Network. NIPS 2015 [3] Polyak and Wolf. Channel-Level Acceleration of Deep Face Representations. IEEE Access, 2015. [4] Anwar et al. Structured Pruning of Deep Convolutional Neural Networks. arXiv 2015.

NEC Laboratories America Relentless passion for innovation

Experiments					
	Error	FLOP	Pruned	Parameters	Pruned
	6.75	3.13 x 10 ⁸		1.5 x 10 ⁷	
	6.60	2.06×10^{8}	34.2%	5.4 x 10 ⁶	64%
Ì	6.88				
	6.96	1.25 x 10 ⁸		8.5 x 10 ⁵	
	6.90	1.12 x 10 ⁸	10.4%	7.7 x 10 ⁵	9.4%
	6.94	9.09×10^7	27.6%	7.3 x 10 ⁵	13.7%
ain	8.69				
	6.47	2.53 x 10 ⁸		1.72 x 10 ⁶	
	6.45	2.13 x 10 ⁸	15.9%	1.68 x 10 ⁶	2.3%
	6.70	1.55 x 10 ⁸	38.6%	1.16 x 10 ⁶	32.4%
rain	7.06				
	26.77	3.64 x 10 ⁹		2.16 x 10 ⁷	
	27.44	3.08×10^{9}	15.5%	1.99 x 10 ⁷	7.6%
	27.83	2.76 x 10 ⁹	24.2%	1.93 x 10 ⁷	10.8%
	27.52	3.37 x 10 ⁹	7.5%	2.01 x 10 ⁷	7.2%

~30% reduction in FLOPs for VGG-16 (on CIFAR-10) and ResNets without

Training a pruned model from scratch performs worse than retraining a

Pruning the first layer of the residual block is more effective.

