
Towards Fast and Efficient Representation Learning

Hao Li

PhD Dissertation Defense

June 14, 2018

Representation Learning for Computer Vision

2009

hand-designed architectureshand-designed features

2012 2018

“Learning representations of the data that make it easier to extract useful information when building
classifiers or other predictors.” Bengio et al, PAMI’13

automaticly designed architectures

Evolution of Convolutional Nerual Networks

AlexNet
18.2% top-5
8 layers
60 M params
0.86 B FLOPs

GoogLeNet
6.7% top-5
22 layers
5 M params
1.5B FLOPs

ResNet
5.7% top-5
152 layers
60 M params
11 B FLOPs

VGG-19
7.3% top-5
19 layers
140 M params
19 B FLOPs

2012 2014 2016 2017

DenseNet
5.3% top-5
264 layers
32 M params
11 B FLOPs

NASNet
3.8% top-5
28 cells
88 M params
23 B FLOPs

2018

Enabeling Factors and Challenges

Faster Hardware

Power Efficiency

Large-Scale Dataset

Inference/Training Cost

millions of parameters
billions of FLOPs/image
days or weeks of training

applications with
limited data

$$$$ electronic bills
hard to deploy on

embedded devices

High-Capacity Models

Data Efficiency

Algorithm

Interpretation

limited understanding
lack of theory

Towards Fast and Efficient Representation Learning

Reducing the Inference Cost
• How to reduce the model size?

• How to reduce the number of operations for
fast inference?

Reducing the Training Cost
• How to accelerate training with HPC?

• How to train low-precision models on
resource-constrained devices?

Understanding the “black box”
• Understand the generalization ability.

• Understand the choice of architectures.

• Understand the optimization process.

Reducing the Training Cost

Training Quantized Network: A Deeper Understanding, NIPS’17

Reducing the Inference Cost

Pruning Filters for Efficient ConvNets, ICLR’17

kernel matrix

Understanding the “black box”

Visualizing the Loss Landscape of Neural Nets, arXiv’17

Pruning Filters for Efficient ConvNets

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, Hans Peter Graf

International Conference on Learning Representations (ICLR), 2017

Model Compression by Pruning Weights

LeCun, et al, “Optimal Brain Damage”, NIPS 1990.
Han, et al, “Learning both Weights and Connections for Efficient Neural Networks”, NIPS 2015.
Han, et al, “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016

Pruning weights with small magnitude Impressive results for model compression

Compression ≠ Acceleration

1. 90% of the total parameters of
VGG-Net comes from the FC
layers, which takes less than 1%
total FLOPS.

3. Pruning weights generates sparse
convolutional kernels, which
requires special library or hardware.

2. ResNets have replaced the FC
layers with average pooling layers.

Convolutional Operations

Acceleration by Pruning Filters

Prune a filter, its corresponding feature map and the connected kernels.

Acceleration by Pruning Filters

Copy the remaining weights to a new model without using mask.

No mask/sparse convolution, no special library/hardware

Determining a Filter’s Importance

Filters ranked by L1-norm

Determining a Filter’s Importance

Filters ranked by L1-norm

Determining a Filter’s Importance

smallest random largest

pruning the smallest filters works better than pruning random or the largest filters.

Determining a Layer’s Sensitivity to Pruning

Retrain to recover accuracyPrune the smallest filters

Pruning Filters across Multiple Layers

Independent pruning Greedy pruning

Pruning Filters across Multiple Layers

ResNet 56 ResNet 110
ResNet 34 on ImageNet

layers that are close
to pooling layers are
sensitive to pruning

Results

• 24%~ 38% reduction in FLOPs for VGG-16
and ResNets without losing accuracy on
CIFAR-10.

• 24% reduction in FLOPs for ResNet-34
with ~1% loss in accuracy on ImageNet.

• Pruning a wider model with retraining
performs better than training the pruned
thin network from scratch.

Model Top-1 Error Pruned
FLOPs

Pruned
Params

VGG-16 6.75

VGG-16-pruned-A 6.60 34.2% 64%

VGG-16-pruned-A scratch train 6.88

ResNet-56 6.96

ResNet-56-pruned-A 6.90 10.4% 9.4%

ResNet-56-pruned-B 6.94 27.6% 13.7%

ResNet-56-pruned-B scratch train 8.69

ResNet-110 6.47

ResNet-110-pruned-A 6.45 15.9% 2.3%

ResNet-110-pruned-B 6.70 38.6% 32.4%

ResNet-110-pruned-B scratch train 7.06

ResNet-34 26.77

ResNet-34-pruned-A 27.44 15.5% 7.6%

ResNet-34-pruned-B 27.83 24.2% 10.8%

Reducing the Training Cost

Training Quantized Network: A Deeper Understanding, NIPS’17

Reducing the Inference Cost

Pruning Filters for Efficient ConvNets, ICLR’17

Understanding the “black box”

Visualizing the Loss Landscape of Neural Nets, arXiv’17

Training Quantized Networks: a Deeper Understanding

Hao Li*, Soham De*, Zheng Xu, Christoph Studer, Hanan Samet, Tom Goldstein

Neural Information Processing Systems (NIPS), 2017

32-bit W, 32-bit A 1-bit W, 32-bit A 1-bit W, 1-bit A

Low-Precision Neural Networks

∼58× faster with XNOR and
bit counting ops

32× smaller, ∼2× faster with
addition and subtraction ops

Rastegari, et al, “XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks”, ECCV 2016

Full-precision model

Training DNNs: from HPC to Embedded Devices

How to train quantized models on resource-constrained devices?

TPU 1.0 TPU 2.0

Training on HPC

Quantization

Inference on Devices

• Non-quantized: SGD

• Semi-quantized: BinaryConnect [Courbariaux et al NIPS’15]

requires full-precision weights

QNN[Hubara et al’16],
XNOR-Net [Rastegar et al, ECCV’16],
DoReFA-Net [Zhou et al’16] …

How to Train Quantized Nets?

fast forward propagation

accumulating gradients

no full-precision weights

• Fully-quantized: Deterministic / Stochastic Rounding [Gupta et al, ICML’15]

Empirical Result

Train CNNs with binary weights on CIFAR-10

Deterministic Rounding

Stochastic Rounding

BinaryConnect

Full-Precision

Why does keeping floating point weights help?

Keeping the real-valued weights seems to really help empirically.

Toy Example for Non-Convex Problems

learning rate = 1

Quantized scalar weight

Weight Distribution after 1M Steps

lr = 1 lr = 0.1 lr = 0.01 lr = 0.001

BC

SR

Exploration-Exploitation Tradeoff

SGD/BinaryConnect

Exploration
Exploitation

Exploration

Exploitation
shrink learning rate

Stochastic Rounding

Exploration
Exploitation

Exploration
shrink learning rate

Exploitation

Markov Chain Interpretation

Discrete state space Markov property
The probability of moving to the next state depends only
on the present state and not on the previous states.

Markov process
SR starts at some state , and moves to a new state
with some transition probability that depends
only on and the learning rate . For fixed , this is a
Markov process with transition matrix .

x

yx

Markov Chain Interpretation

shrink learning rate

the distribution of perturbation

Conditional Probability

lr = 1 lr = 0.1 lr = 0.01 lr = 0.001

BC

SR

Transition Probability

lr = 1 lr = 0.1 lr = 0.01 lr = 0.001

SR

BC

Long Term Behavior

lr = 1 lr = 0.1 lr = 0.01 lr = 0.001

BC

SR

The stationary distribution of Stochastic Rounding does not
concentrate on stationary points.

The stationary distribution of BinaryConnect concentrates
on stationary points.

These algorithms have an exploitation phase!

Exploration slows down, but exploitation never happens!

Experiment Results

• The BC method changes less than 20% of the weights, which indicates that BC is able to
change from explorative to exploitative – it drives more towards local minimizers and
explores less aggressively.

• The SR method is not able to exit the exploration phase; it keeps changing weights until 50%
of the weights differ from their starting values.

BinaryConnect Stochastic Rounding

Experiment Results

• The binary model trained by BC-ADAM has comparable performance to the full-precision model.

• There is a performance gap between SR-ADAM and BC-ADAM across all models and datasets.

• Wide-Residual Networks are easier to train and generalize better.

Reducing the Training Cost

Training Quantized Network: A Deeper Understanding, NIPS’17

Reducing the Inference Cost

Pruning Filters for Efficient ConvNets, ICLR’17

Understanding the “black box”

Visualizing the Loss Landscape of Neural Nets, arXiv’17

Visualizing the Loss Landscape of Neural Nets

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, Tom Goldstein

Why Visualize the Loss Surface

Training neural networks requires minimizing a high-dimensional non-convex loss function

Geometric intuition of the loss surface is
a key way of improving optimization
methods and architecture design.

which is a process of searching for a weight vector which gives the smallest loss value.

The Flatness/Sharpness of a Minimizer

Hochreiter & Schmidhuber. Flat minima. Neural Computation, 1997
Chaudhari, et al, Entropy-sgd: Biasing Gradient Descent into Wide Valleys, ICLR 2017

“flat region” of the loss landscape are robust to
• data perturbations
• noise in the activations
• perturbations of the parameters (can be specified with lower-precision weights)

Interpreting High-Dimension Loss Surface

The high dimensionality of
the weight space makes
visualization of the loss
surface very difficult.

……

1-Variable 2-Variable

The computation cost of
high resolution surface
visualization is very
expensive.

……

Interpreting High-Dimension Loss Surface

1-D Linear Interpolation [Goodfellow’15]

Given two solutions , , and the targeted direction :θ2 − θ1θ2θ1

f(α) = L(θ1 + α(θ2 − θ1))

initial weights

Goodfellow et al, “Qualitatively characterizing neural network optimization problems”, ICLR 2015

θ1

Interpreting High-Dimension Loss Surface

1-D Linear Interpolation [Goodfellow’15]

Given two solutions , , and the targeted direction :θ2θ1

f(α) = L(θ1 + α(θ2 − θ1))

small batch large batch

initial weights

θ1 θ2

Keskar et al, “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima”, ICLR 2017

Flat Minimum Sharp Minimum

Training Function

Testing Function

f(x)

small batch large batch

θ2 − θ1

Small-batch vs Large-batch
w
eig

ht
de

ca
y
=
0.
0

w
eig

ht
de

ca
y
=
5e

-4

7.37% 11.07%

6.00% 10.19%

Scale Invariance of NN’s Weights

The loss function will change very quickly in the direction of a small filter, and very slowly in the direction of large filter.

BN

The scale transformation does not affect the generalization as the behavior of the function is identical.

Normalized 2D Surface Plotting

1. Create two random directions and δ η

2. Normalize each filter in and to have the
same norm of the corresponding filter

δ η

δi ←
δi

∥δi∥
∥θi∥

3. Plot the function f(α, β) = L(θ + αδ + βη)

ηi ←
ηi
∥ηi∥
∥θi∥

δ

η

Normalized 1D Visualization: VGG-9

WD = 0

WD = 5e-4

7.37% 11.07% 7.44% 10.91%

6.00% 10.19% 7.80% 9.52%

SGD, 128 SGD, 8192 Adam, 128 Adam, 8192

Normalized 2D Visualization: VGG-9

WD = 0

WD = 5e-4

7.37% 11.07% 7.44% 10.91%

6.00% 10.19% 7.80% 9.52%

SGD, 128 SGD, 8192 Adam, 128 Adam, 8192

We now know how optimization hyperparamters affect the
loss landscape

optimizer, batch size, weight decay….

How does the network architecture affect the loss landscape?
depth, width, shortcut connection ….

Effect of Identity Mapping

ResNet-56-noshortResNet-56

Effect of Identity Mapping

ResNet-56-noshortResNet-56

Effect of Identity Mapping

ResNet-56-noshortResNet-56

Effect of Network Depth

7.37% 5.89% 5.79%

8.18% 10.83% 16.44%

ResNet

VGG-like

20 layers 56 layers 110 layers

13.31% lr=0.01 lr=0.01

Effect of Network Width: Wide-ResNet-56-k

5.89% 5.07% 4.34% 3.93%

13.31% 10.26% 9.69% 8.70%

V
G

G
-l

ik
e

increased width prevents chaotic behavior, and skip connections dramatically widen minimizers!

R
e
sN

e
t

k = 2 k = 4 k = 8k = 1

Are we really seeing convexity?

Summary

• The local geometry of landscape has a correlation with the generalization.

• The sharpness of different minimas cannot be compared with 1D linear
interpolation due to the weight scale invariance.

• We provide a more accurate visual correlation between flatness and
generalization, allowing side-by-side comparison.

• Some neural architectures are easier to minimize than others, such as wide
networks, NNs with residual connections.

Future Work
Understanding the loss surface of RNN, GAN and RL.

Understanding the generalization ability of neural networks.

Architecture search with good loss landscape.

Optimization methods for training low-precision networks.

Reducing the Training Cost
Training Quantized Network: A Deeper Understanding, NIPS’17

Reducing the Inference Cost
Pruning Filters for Efficient ConvNets, ICLR’17

kernel matrix

Understanding the “black box”
Visualizing the Loss Landscape of Neural Nets, arXiv’17

Selected Publications

• Hao Li, Zheng Xu, Gavin Taylor, Tom Goldstein. Visualizing the Loss Landscape of Neural Nets.
International Conference on Learning Representations (ICLR) Workshop Track, 2018
in submission to Neural Information Processing Systems (NIPS), 2018

• Hao Li*, Soham De*, Zheng Xu, Christoph Studer, Hanan Samet, Tom Goldstein. Training Quantized
Nets: A Deeper Understanding. Neural Information Processing Systems (NIPS), 2017

• Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, Hans Peter Graf. Pruning Filters for Efficient
ConvNets. International Conference on Learning Representations (ICLR), 2017

• Hao Li, Shangfu Peng, Hanan Samet. Streaming News Image Summarization. International Conference
on Pattern Recognition (ICPR), 2016 (Oral)

• Hao Li, Asim Kadav, Erik Kruus, Cristian Ungureanu. MALT: Distributed Data-Parallelism for Existing
ML Applications. ACM European Conference on Computer Systems (EuroSys), 2015

Many Thanks!

Thanks for listening!

Repeatability of the Loss Surface Visualization

Repeatability of the Loss Surface Visualization

Visualizing the Optimization Path

Normalized 1D Visualization: ResNet-56

WD = 0

WD = 5e-4

8.26% 13.93% 9.55% 14.30%

5.89% 10.59% 7.67% 12.36%

SGD, 128 SGD, 8192 Adam, 128 Adam, 8192

Normalized 2D Visualization: ResNet-56

WD = 0

WD = 5e-4

8.26% 13.93% 9.55% 14.30%

5.89% 10.59% 7.67% 12.36%

SGD, 128 SGD, 8192 Adam, 128 Adam, 8192

Effect of Network Width

5.89%

ResNets
for

CIFAR-10

ResNets-20 7.37% 5.79%

5.42% 4.73% 4.55%

ResNets
for

ImageNet

ResNets-56 ResNets-110

ResNets-18 ResNets-34 ResNets-50

