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Abstract

Model selection is essential for reducing the search cost of
the best pre-trained model over a large-scale model zoo for
a downstream task. After analyzing recent hand-designed
model selection criteria with 400+ ImageNet pre-trained
models and 40 downstream tasks, we find that they can fail
due to invalid assumptions and intrinsic limitations. The
prior knowledge on model capacity and dataset also can not
be easily integrated into the existing criteria. To address
these issues, we propose to convert model selection as a
recommendation problem and to learn from the past training
history. Specifically, we characterize the meta information
of datasets and models as features, and use their transfer
learning performance as the guided score. With thousands
of historical training jobs, a recommendation system can
be learned to predict the model selection score given the
features of the dataset and the model as input. Our approach
enables integrating existing model selection scores as ad-
ditional features and scales with more historical data. We
evaluate the prediction accuracy with 22 pre-trained mod-
els over 40 downstream tasks. With extensive evaluations,
we show that the learned approach can outperform prior
hand-designed model selection methods significantly when
relevant training history is available.

1. Introduction
Much of the success of deep learning can be ascribed to its

flexibility: One can train a neural network on a task, and then
use it on a different one, typically after fine-tuning. There
are currently two trends for scaling this practice: One is to
pre-train a large number of specialized models (a “Model
Zoo” [10]) and then select one to fine-tune once the down-
stream task of interest becomes manifest, typically with a
smaller fine-tuning dataset. Another is to pre-train a single
“Foundation Model” which is then used to support any and
all downstream tasks [47, 57].

Without additional specifications, the second case is a
subset of the first, for one can take the Model Zoo and
Model Selection (MS) mechanism and call it a single model.

For this reason, Foundation Models are characterized as
homogeneous and task-agnostic, where homogeneity refers
to a single neural network architecture, in contrast with the
heterogeneous collection of models in a zoo. Even with
this restriction, the model zoo is more general, for nothing
prevents a Foundation Model to be part of a zoo. In addition,
selecting a smaller dedicated model pretrained for a task can
be much more efficient than using a giant monolithic model
For these reasons, we focus on model selection over a large
heterogeneous model zoo for fine-tuning as the key solution
for scaling inference to a wide variety of downstream tasks.

Brute-force model selection [1, 12] requires fine-tuning
each pre-trained model on the task of interest, and then rank-
ing them using the test error on a held-out dataset as a model
selection score. This is not feasible for large model zoos.
Current model-selection methods therefore aim to predict
the model selection score without actually fine-tuning.

However, current model selection methods do not take
into explicit account even basic characteristics of the fine-
tuning dataset, such as the number of classes or the number
of images, nor of the pre-trained model, such as the model
family, the size of the input, the number of parameters and
the dataset on which it is pre-trained. While coarse, these fea-
tures can affect the best model to fine-tune, since a mismatch
between fine-tuning dataset size and pre-trained model, or
input dimensions, or number of classes, can influence the
success of downstream performance.

Instead of proposing yet another model selection score,
we propose re-framing model selection as a recommender
system, and directly predict the selection score and corre-
sponding ranking, from whatever existing model selection
scores are readily available, in addition to whatever coarse
features a user deems informative – which may be context
dependent, as some users may wish to penalize large models,
or models that require high-resolution input. Such features
help guide the model selection using criteria beyond raw
downstream validation error. For this reason, we refer to our
recommendation approach as guided, in addition to trained.

We find that incorporating model size, dataset size, cardi-
nality of the hypothesis set and other simple features already
improves the prediction of the expected model selection
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score compared to current model selection methods. Coarse
features, such as the model class family (convolutional, fully-
connected, residual, attention-based, etc.) can help associate
certain architectural inductive biases such as translation vs.
permutation invariance, to the best-fitting downstream tasks,
for instance object detection vs. image inpainting or segmen-
tation.

Our contribution can be summarized as:

• We conduct comprehensive analysis of existing model
selection approaches with a large heterogeneous model
zoo and confirmed their limitations. We find feature-
based model selection becomes inaccurate when the
target dataset is different from the source task and the
effect of model initialization diminishes as the number
of images grows. The useful meta information and prior
knowledge in the training history are often neglected
and cannot be easily integrated into existing model
selection criteria.

• We convert the model selection problem as model rec-
ommendation by learning from past training history.
The meta information of both dataset and model are em-
bedded as features and a recommender system can be
learned to predict the performance. The existing model
selection can be used as additional features and makes
the framework comply with existing approaches. We
show significant performance improvement over tradi-
tional model selection methods when historical training
data is available and relevant.

In the next section we formalize the MS problem, and
discuss the issues with existing approaches. In section 3
we describe our approach to casting it as a recommendation
system and evaluate it in the following section.

2. Background
2.1. Problem Formalization

Let Ti be pre-training candidate tasks, with i =
1, . . . ,M , encoded in their corresponding datasets Di =
{(xk, yk)}Ni

k=1 (the dataset is all a model knows about the
task prior to training), used to train a chosen architecture
(function class) ϕi(·;wi) by minimizing a loss function Li

with respect to the weights w, yielding

wi = argmin
w

∑
(xk,yk)∈Di

ℓ(yk, ϕi(xk;w))︸ ︷︷ ︸
Li

.
= ŵ(ϕi, Di)

(1)
where the pre-trained weights wi are a function ŵ of the
dataset, the architecture, and the pointwise loss ℓ, which
is typically cross-entropy, in addition to the optimization
procedure, regularizers, hyperparameters, and other factors

that we omit for simplicity since we wish to focus on the
relative role of the architecture and the dataset.

When fine-tuning a model ϕi for a different task Tj ̸=i,
the architecture is conditioned on using ϕi, either as a frozen
embedding, or as an initialization, so the model to be fine-
tuned for the task Tj using the dataset Dj , has the form
ϕj(ϕi(·;wi);w) and the fine-tuning loss Ṽij is

min
w

∑
(xk,yk)∈Dj

ℓ(yk, ϕj(ϕi(xk;wi);w))
.
= Ṽ (ϕi|ϕj , Di, Dj)

(2)
Ṽij is the empirical model selection score, corresponding
to the training error during fine-tuning. Brute-force model
selection consists of solving

ϕ̂i = argmin
ϕi

Ṽ (ϕi | ϕj , Di, Dj). (3)

It is immediate to see that for the function ϕ̂i to be constant
with respect to ϕj (that is, for the pre-trained representation
to be task-agnostic) it would either have to be conditioned on
all possible tasks (including those with different hypothesis
spaces, hence be non-homogeneous), or be a trivial lossless
compression of the data, for the task could turn out to be
reproducing an identical copy of the data. This would defer
the burden of learning to the fine-tuning phase, annihilating
the value of pre-training and undermining the main premise
of Foundation Models as homogeneous and task-agnostic
and optimal for fine-tuning. This further reinforces our focus
on heterogeneous model selection.

The validation error on a held-out dataset, or ideally the
marginal over all possible fine-tuning datasets, is the (ex-
pected) model selection score

V̂ij = EDj Ṽ (ϕi|ϕj , Di, Dj) (4)

which is clearly not computable.

Feature-based Model Selection Most recent MS methods
(e.g., LFC [10], PARC [5], and LogME [60]) extract features
with each candidate model on the target dataset, and then
calculate the MS score. Given a dataset D = {x,y}, let
fw(xi) denote the feature vector extracted from penultimate
layer of pre-trained model ϕ for data xi. The LFC score is
calculated as

SLFC(x,y) = fw(x)fw(x)
T · yyT (5)

where (yyT )i,j = 1 if xi and xj have the same label and -1
otherwise. The normalized SLFC can be interpreted as the
Pearson Correlation between the features and labels. The
assumption is that a better candidate model’s initialization
usually has similar features for samples with the same labels.
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Figure 1. Comparison of MS algorithms with 400+ ImageNet pre-trained models. In the 1st row, features are not normalized. LFC [10],
LogME [60] and PARC [5] (w.o. normalization) all treat ViTs (gray points) as outliers. When features are normalized in the 2nd row, MS
scores improve for all methods and ViTs are not outliers, indicating the importance of feature normalization for heterogeneous models.

2.2. Model Selection Limitations

Feature-based MS methods usually fix the candidate
model as feature extractors and assume the fine-tuning pro-
cess does not change the backbone weights too much. How-
ever, the assumption may not hold in practice and results in
failure. Here we evaluate three MS algorithms (LFC [10],
PARC [5], and LogME [60]) with two settings and demon-
strate the cases in which they can fail. a) fine-tuning the 400+
ImageNet pre-trained models on ImageNet. The fine-tuning
performance should be consistent with their pre-training per-
formance. b) we select 22 models near the Pareto frontier
of the 400+ models and fine-tune them on 40 downstream
datasets. More setup details can be referred to Sec. 4.1.

Difficulty with heterogeneous models Existing MS meth-
ods usually validate their approaches with a homogeneous
model zoo in which models differ only in pre-trained do-
mains. And it is often believed that better ImageNet model
also transfer better on downstream tasks [31], which seems
to makes the problem of MS with heterogeneous model zoo
trivial. However, we find that the optimal architecture or
Pareto front models can be task dependent, which relies on
both the inductive bias of the model and the characteristics
of the dataset. In addition, existing MS algorithms can fail
to accommodate new architectures such as ViTs which have
much smaller feature dimensions compared to ResNets. As
shown in Fig. 1, ViTs are outliers for MS methods without
explicit normalization. Normalizing the input features of all

architectures can mitigate this issue and improve the Pear-
son correlation scores. This was observed in [5] in which
they further improve PARC by applying PCA and adding
normalized network depth to incorporate the network capac-
ity. However, the heuristic cannot always generalize across
architectures, e.g., ViTs that come without the same depth
concept in terms of convolutional layers. More details on
the heterogeneous model zoo can be found in Appendix D.

Difficulty with dissimilar target datasets Existing MS
algorithms often assume that the weights of pre-trained mod-
els do not change much during fine-tuning, which is valid
for few-shot or linear probing where the majority of weights
do not change much. However, the effect of initialization
often diminishes as the dataset size grows. When training
data is large, a random initialized model with high capac-
ity can yield better performance than a pre-trained simple
model. The MS score of the random initialized model can be
lower than the pre-trained one, which does not represent the
underlying generalization ability of the model. Fig. 2 shows
a clear difference for the MS performance between dogs [30]
and aircrafts [38]. Note that dogs is known to be similar to
ImageNet but not aircrafts1. It verifies that MS can fail to
predict top performing models when a downstream task is
much different from the source task.

1Stanford Dogs (dogs) was built using images from ImageNet.
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Figure 2. Pearson Correlation of three MS methods on the 19 fine-
grained datasets with 22 models. Note that the correlation scores
for aircrafts and pneumonia are much lower than other datasets.

Difficulty of incorporating prior knowledge The induc-
tive bias can be heuristically added to existing MS score,
e.g. PARC [5] incorporates the model depth on top of the
original MS score. However, adding such heuristics to ex-
isting MS score requires ad-hoc tuning of the scale of the
heuristic score, which is hard to extend to more indicators.
On the other hand, the importance of the model inductive
biases is often associated with the dataset characteristics,
which is hard to integrate manually, e.g., “a random initial-
ized model with large capacity can generalize better than
a small pre-trained model for a large dataset” and “a small
model can perform the same as a bigger model for a simple
task”. In such cases, the effectiveness of model pre-training
and capacity is also determined by the dataset size and task
hardness. Therefore we need to associate the inductive bias
of the model and the characteristics of the task. Existing MS
methods often only use a small probe set with fixed number
of images to reduce the computation cost, which neglects
the meta information of target dataset size.

3. Learning to Recommend
Instead of manually designing a model selection criteria,

we propose to learn to select models from the training history.
Given the historical training results, we can characterize
the features of datasets and models, and use fine-tuning
performance as the ground truth. The goal is to predict
performance on the target dataset for a given model. Then a
model selector can be learned to select the optimal model for
a given task. Fig. 3 illustrates the recommendation problem
and how the training history is represented in the embedding
space.

3.1. Model Selection as Recommendation

In order to frame model selection as a recommendation
system, we represent the pre-trained model ϕi with an el-
ement of a vector space vi, and/or a simpler vectorized
version of coarse features such as the number of parameters,
input dimension, number of classes, index of the architecture
family and pre-training dataset, etc. Similarly, we embed the
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Figure 3. An illustration of learning from the training history and
the representation of training data for the recommender system.
The left matrix shows the training history with 4 pairs of dataset
and model, with the goal to predict the performance of unknown
pairs. The right figure shows the encoding of the each training job
is concatenated features of the datset, model and others.

fine-tuning dataset Dj onto a set of features vj , for instance
its cardinality and dimension of the hypothesis space. In
addition, we can use any available predictive MS score Uij .
A recommendation system then implements a learnable map
that, for each pre-trained model i and downstream task j
predicts the expected score V̂ij :

RM : [1, . . . ,M ]× [1, . . . , J ] → R
(i, j) 7→ V̂ij = RM(i, j)

(6)

where V̂ij = ψw(vi(ϕi),vj(Dj), Uij) and ψw is a param-
eterized map, for instance a factorization machine, with
learnable parameters w, trained to approximate the valida-
tion scores V̂ij . By choosing the features vi,vj a user can
factor in additional MS criteria besides the structure of the
data, which is often captured in the MS scores Uij , to guide
the recommendation. Since the analytical expression for the
functions ŵ(·), ϕ̂(·) and V̂ (·) are intractable, in this paper
we study the problem in (3) empirically in the next section.

3.2. Recommendation Model

There are several options for learning the recommenda-
tion model. If the model zoo is fixed, a straight-forward
solution is to learn a classifier that directly maps a given
task to the best model [46]. The challenge lies at the usual
insufficient training samples in comparison with the high di-
mensions of the dataset representation (e.g., 2048 for ResNet
feature). And the fixed model zoo size makes it hard to adapt
when new models are added to the model zoo. Therefore,
we mainly consider the following two options:

• Linear Regression (LR) A LR model can be learned
to predict performance with the concatenated task and
model features. However, LR learns the effect of each
feature independently and the interaction among features
can not be modeled.

• Factorization Machine (FM). Factorization Machine
(FM) [49] is widely used in recommender systems and
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CTR prediction. FM is often preferred over Linear Re-
gression (LR) as it can learn the correlations among
different features via latent embedding, even when there
is no data point for the correlation. Given N histor-
ical transfer learning results {(di,mi,yi)}Ni=1, where
di = v(D) ∈ Rd and mi = v(ϕ) ∈ Rm represents the
feature embedding of dataset D and model ϕ for the ith
fine-tuning job, d and m are their embedding length, yi
is the fine-tuning top-1 accuracy on the validation set.
Let z ∈ Rd+m denote the concatenated features of the
pair of dataset and model, the predicted score of FM is

SFM(z) = w0+

|z|∑
i=1

wizi+

|z|−1∑
i=1

|z|∑
j=i+1

⟨ui,uj⟩zizj (7)

where ui ∈ Rk is the latent representation of the ith
feature. Note that the first two terms is actually LR. With
the third term, FM considers interactions among features
in addition to linear combination of features.

In the next sub-section, we will describe the feature em-
bedding for datasets and models in detail.

3.3. Characterizing Datasets and Models

Dataset Embedding We explore the following descriptors
for describing a task:

• task difficulty: If a task can be solved with a model’s
initial weights without much change, then the task is
relatively easy for the model, e.g., linear probing (fixed
embedding + SVM) is often used as a baseline for trans-
fer learning. If a task gets high performance with linear
probing, then it indicates the dataset is relatively easy
to solve with a simple linear classifier. A MS score
calculated with a fixed backbone (e.g., ResNet-18) can
estimate the relative difficulty of the dataset.

• number of samples: The dataset size affects the task dif-
ficulty and model selection. A few-shot task is generally
harder than tasks with large sizes and requires a strong
model. The larger the dataset size, the more possibility
of choosing a model without a strong initialization. Note
that current MS algorithms (e.g., LFC [10]) usually use a
prob set with fixed size, while in reality the prob set size
could vary significantly.

• number of classes: When the total images are fixed, the
task difficulty usually increase as the number of classes.

Model Embedding To characterize the model’s inductive
bias, we use the following features for model embedding:

• architecture family: architectures of the same family
usually have similar inductive biases as they consist of

similar modules, blocks and activation functions. We use
the architecture family to categorize the inductive biases
of models of the same family, such as ConvNeXt, ViT,
Swin-Transformers, EfficientNet and etc.

• input size: it is reported higher resolution usually helps
for downstream tasks [31], and we see this is true for
fine-grained tasks (e.g., EfficientNet-B3 works best for
cars and aircrafts as seen in Appendix D). On the other
hand, simple cases (e.g., MNIST) may not benefit from
higher resolutions.

• model capacity: a model with high capacity usually
generalizes better with more data. This is measured by
the number of parameters.

• model complexity: the calculation cost (GMACs) can
represent the complexities.

• pre-trained domain: the pre-trained domain matters for
the downstream task performance. If the source dataset
is available, then the domain distance between the source
domain and the target domain can be a indicator. How-
ever, such information is not always available. We have
models pre-trained on ImageNet-1K and ImageNet-22K.

Additional Features The advantage of recommender sys-
tem is that features related to the prediction can always be
added, which makes the solution scalable to new features.
Beyond the embedding of datasets and models, we can add
additional features that are relevant to the performance pre-
diction. The existing MS scores can be treated as additional
features, as it considers the feasibility of the model’s initial
features (Eq. 5). Other features such as the semantic distance
between the target task and the model’s source task can also
be added as additional feature, which could be useful for
few-shot or zero-shot learning. We will leave this extension
for future works.

4. Experiments
4.1. Settings

Datasets We collected three benchmarks and a total of 40
image classification tasks, including 19 fine-grained datasets,
DomainNet [45] and the VTAB [61]. Those datasets cover
a wide range of domains and applications, such as scenes,
objects, food, texture, art and medical imaging. DomainNet
consists of 6 datasets of different domains with the same
labels. VTAB consists of various tasks which can be cate-
gorized into natural, structured and special. More details
about the datasets can be found in Appendix A.

Models The TIMM model zoo collected more than 550
ImageNet pre-trained models. We evaluated all pre-trained
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models and keep 409 models that can be fine-tuned with
batch size 32 with a single v100 GPU. We evaluated their
single image inference latency and identified the Pareto fron-
tier in their latency-accuracy trade-off plot. We select 22
models that are near the Pareto Front curve, which covers
a wide range of common architecture families, including
ReseNet [17], DenseNet [21], MobileNet [20], Efficient-
Net [53], ViTs [11], Swin-T [36] and ConvNeXt [37]. The
complete model list can be found in Appendix A.

Training History The models in the TIMM model zoo
usually have ImageNet validation accuracy. Those results
are obtained by training the model from scratch. If we reini-
tialize the last layer of each pre-trained model and fine-tune
on ImageNet, we should expect the performance same with
the reported results. In addition, we fine-tuned the selected
22 models end-to-end with HPO to obtain their best Top-
1 accuracy on the 40 downstream tasks. All pre-trained
models are trained with a single V100 GPU with the same
range of hyperparameters. More details about the models
and fine-tuning settings can be found in Appendix A.

Evaluation Metrics We measure MS performance on a
given dataset (or probe set) with Pearson correlation coeffi-
cient, which measures linear correlation between MS score
and oracle transfer performance, which is the covariance of
the two variables divided by the product of their standard
deviations. We use the mean Pearson correlation over all
datasets in a benchmark to for comparison.

Recommendation Tasks We consider the following sce-
narios for model recommendation: a) Learn from the training
history of one dataset with a subset of models and evaluate
unseen models on the same dataset (e.g., ImageNet). b)
Learn from the training history of one dataset and evaluate
with the same models on unknown downstream tasks. c)
Learning from the training history of both ImageNet and
downstream tasks, and evaluate MS with known models on
unseen tasks. Note that the diversity and amount of training
samples (number of datasets and models) increases in these
settings progressively. An illustration of the three settings
can be seen in Fig. 4.
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Figure 4. An illustration of the three evaluation settings. The green
boxes represent the available training pairs of dataset and model
with fine-tuning accuracy, and the yellow boxes indicate the pairs
of dataset and model to be predicted for their performance.

4.2. Recommendation Results

4.2.1 Learning from the training history on ImageNet
and evaluating unseen models on the same dataset

The ImageNet pre-trained model zoo provides off-the-shelf
Top-1 accuracy for 400+ models, which can be used as
the groundtruth performance. Note that given the volume
of ImageNet, it is expected that models with or without
ImageNet pre-training will converge to the same accuracy.
To evaluate the learned MS on predicting the performance
of unseen architectures on ImageNet, we randomly split the
400+ models with 80% of them for training and the rest 20%
for evaluation. In Table 1, we compare the learned MS with
different training features with the traditional feature-based
MS methods.

With the pre-trained model weights, we see that learned
MS (both LR and FM) with only meta features perform bet-
ter than SLogME. When the MS score is used as additional
feature, the performance is better than using simply meta
features or the MS score itself. When the models are ran-
domly initialized, the feature-based MS methods fail to rank
the models due to the randomness of extracted feature. In
contrast, learning based method still get reasonable corre-
lation score and is robust even when the noisy MS score
is added as additional feature. The knowledge that larger
models usually generalizes better can still be learned.

Note that since all training data are based on ImageNet
training history, the dataset features are the same for all
training data, and the correlation between dataset feature
and model feature cannot be well learned. The learned MS
score is mainly determined by the model feature, i.e., models
with large capacity has better performance. Thus we see FM
does not show advantage over a simple LR model, which
is expected. We will see difference when expanding the
training set in Sec. 4.2.3.

Table 1. MS learned with only ImageNet training history. The
ImageNet benchmark samples 80% of the 409 models as training
set while the rest of models are used for evaluation. The experiment
is repeated 10 times and the mean/std values are reported.

Methods Features ImageNet
Pre-trained Random Init.

feature-based
SLFC [10] 0.65 ± 0.07 0.03 ± 0.10
SLogME [60] 0.35 ± 0.09 0.04 ± 0.08
SPARC [5] 0.83 ± 0.04 0.08 ± 0.09

LR (ours)

d,m 0.53 ± 0.07 0.57 ± 0.10
d,m, SLFC 0.73 ± 0.06 0.56 ± 0.10
d,m, SLogME 0.55 ± 0.08 0.56 ± 0.09
d,m, SPARC 0.85 ± 0.04 0.57 ± 0.11

FM (ours)

d,m 0.54 ± 0.06 0.57 ± 0.10
d,m, SLFC 0.70 ± 0.12 0.56 ± 0.10
d,m, SLogME 0.55 ± 0.09 0.56 ± 0.10
d,m, SPARC 0.84 ± 0.05 0.57 ± 0.11
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Table 2. We evaluate the average Pearson correlation of predicted performance and the groundtruth performance of 22 models on each
benchmark. The ImageNet column is the MS learned with all 409 ImageNet training jobs. The column of LOO (leave-one-out) denotes MS
learned with combined training history of ImageNet jobs and all downstream jobs except jobs on the test dataset.

Methods Features 19 fine-grained 6 DomainNet 15 VTAB

feature-based MS
SLFC [10] 0.55 0.63 0.14
SLogME [60] 0.54 0.52 0.20
SPARC [5] 0.54 0.50 0.13

ImageNet LOO ImageNet LOO ImageNet LOO

LR (ours)

d,m 0.53 0.66 0.80 0.82 0.29 0.37
d,m, SLFC 0.67 0.74 0.84 0.85 0.38 0.41
d,m, SLogME 0.54 0.65 0.81 0.84 0.30 0.36
d,m, SPARC 0.54 0.66 0.81 0.85 0.30 0.40

FM (ours)

d,m 0.53 0.65 0.81 0.85 0.35 0.39
d,m, SLFC 0.64 0.74 0.82 0.87 0.39 0.41
d,m, SLogME 0.60 0.67 0.82 0.86 0.31 0.40
d,m, SPARC 0.56 0.69 0.86 0.86 0.30 0.43

4.2.2 Learning from ImageNet training history and
evaluating known models on downstream tasks

To evaluate the transferability of learned MS on new datasets,
we use all 400+ ImageNet pre-training history as the train-
ing data and predict the performance of 22 models on three
benchmarks. As shown in the ImageNet columns of Table 2,
the learned MS gets comparable or significantly better mean
Pearson correlation than feature-based MS on all bench-
marks, especially on DomainNet. We see adding extra MS
feature can improve performance over learning with only
meta features. Note that the Pearson correlation of all MS
methods are relatively low on the VTAB benchmark which
consists of structured and special tasks that are much differ-
ent from ImageNet. It verifies that feature based MS may not
transfer well for tasks that are very different from the source
task. Since the training data contains 400+ off-the-shelf
models are pre-trained on ImageNet-1K or ImageNet-22K,
it is prone to learn MS rules such as bigger models lead
to better performance, which is mostly true on ImageNet.
Because the training data only consists of ImageNet, the lack
of dataset diversity leads to the learning of such inductive
biases. FM does not show much advantage over LR.

4.2.3 Learning from all training history and evaluating
known models on new tasks.

The power of the recommendation formulation is that its
performance will improve as more training data is available.
For example, if the training history contains models perfor-
mance on a similar dataset as the target dataset, it is possible
that the model works well on the reference dataset will rank
higher for the given task. We further increase the number
and diversity of training history for learning based methods.
For each dataset in a benchmark, we train the MS model with
all available training history except the ones for that dataset,
i.e., leave-one-out (LOO) training data. Table 2 shows that
with more training data added, the LOO results improve sig-
nificantly over the results learned only from ImageNet. Also
both LR and FM learned with only meta features (underline)
are comparable with the ones trained with additional MS
features.

4.3. Ablation Study

Comparing Feature-based MS and Learned MS To un-
derstand which datasets benefit from the learned MS, we
compare the learned MS models with feature-based MS (e.g.,
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Figure 6. The correlation of selected latent features of FM learned with the ImageNet only training history (a and c) and all training history
(b and d). a) and b) select the latent features of dataset IDs, while c) and d) select the scalar features of d and m.

PARC) on each dataset. As shown in Fig. 5, the learned FM
with LOO outperform PARC on 13/19 fine-grained datasets,
6/6 DomainNet datasets, and 10/15 VTAB datasets. The FM
model learned with ImageNet only training history trans-
fers well to benchmarks that are similar to ImageNet (e.g,
dogs, mit67, birds, dtd, clipart, real, sketch, cifar100, and
svhn) but underperforms or fails on dissimilar datasets such
as cars, pneumonia, tile, and cell. On the other hand, with
more diverse training data, LOO trained model performs sig-
nificantly better than PARC or ImageNet-only trained model
on datasets such as aircrafts, tile, logo, smart, dsprites_ori,
diabetic_ret and resisc45.

Learned Feature Correlations Fig. 6 visualizes the cor-
relation matrix of learned latent representation u of selected
features in FMs trained with different training history. Fig. 6
(a-b) shows the correlation of latent representation of dataset
IDs. When only ImageNet history is used, the latent features
of other datasets remain random. We see more structured
correlation among datasets when more diverse training data
is added, i.e., datasets that are similar to each other also have
high correlation in their latent representations, such as dogs
and pets. Fig. 6 (c-d) shows clear correlation among scalar
features of d and m emerges when more data is used, such
as dataset size and MACs/parameters, which indicates that
larger dataset and larger model weights more. We can also
see less correlation among class number and other features.
Note that more advanced algorithms such as field-aware FM
(FFM) [26] may further improve the performance, in which
the correlation of features belonging to the same filed (e.g.,
dataset) are not learned.

5. Related Work
Model Selection MS methods can be categorized based
on whether the source dataset is available. When source data
is available, models are in the same architecture and differ
only in pre-trained domains, the features and labels of source
data and target data can be compared with methods such as
EMD [9] and NCE [54]. Probabilistic based methods such as
H-Score [2], LEEP [42], NLEEP [35] and LogME [60] esti-
mate the likelihood or the marginalized likelihood of labeled

target examples, assuming that a linear classifier is added on
top of the pre-trained model. Recent TransRate [22] mea-
sures the mutual information between the backbone features
and the labels, and also extends to layer selection. LFC [10]
approximates the fine-tuning dynamics by looking at a lin-
earization of the source model around the pre-trained weights
with the assumption that fine-tuned weights tend to remain
close to the pre-trained weights. PARC [5] main differs with
LFC with the choice of correlation metric. Note that an
improved PARC adds model depth with heuristic weight,
which is essentially a linear combination of MS score with
model’s meta feature.

Learning to Recommend There are also learning based
methods to recommend dataset, hyperparameters and tech-
niques for a given task. Neural Data Server [59] provides a
search engine to find the most useful transfer learning data
for the target domain. MS can also be viewed as a hyperpa-
rameter selection problem. HyperStar [40] learns to predict
the performance of a hyperparameter set for a given image
classification task with a end-to-end trained CNN. The work
[14] is most relevant to us, in which a general probabilistic
model matrix factorization is learned for ML pipeline se-
lection. A learning based approach for MS is [46], which
introduced a model routing algorithm for a large number of
expert models. Its domain prediction method classifies the
expert from the image via an auxiliary network, which is a
classification-based approach as we mentioned in Sec 3.2.

6. Conclusion
The nature of long-tailed tasks determines that no single

model works best for all tasks, which makes model selec-
tion in a model zoo with diverse inductive biases necessary.
Instead of manually designing MS criteria, learning the re-
lationship between tasks and models via recommendation
models can be more efficient, effective and scalable to new
meta features and models, and it can be continuously im-
proved with the growing volume of training history. This
makes the framework applicable to other selection problems
as well such as selecting optimal models and hyperparame-
ters at the same time.
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A. Datasets, Models and Fine-tuning Hyperparameters
Datasets The 19 Fine-grained datasets contain 19 commonly used fine-grained visual classification datasets, covering a
wide range of domains, including objects, scene, plants, animals, food, texture, medical, logo and art. The DomainNet [45]
benchmark is designed for evaluating multi-source domain adaptation in object recognition. It contains 0.6 million images
across 6 domains (clipart, infograph, painting, quickdraw, real, and sketch). All domains include 345 categories (classes)
of objects. We use the official train/test splits in our experiments. The VTAB [61] benchmark is designed for evaluating
the transferability of pre-trained models. It consists of 19 datasets and the tasks are categorized into natural, structured and
special. Some of the datasets can also be categorized as in the 19 fine-grained datasets. Note that there are some datasets also
exists in the 19 fine-grained datasets. We include them when reporting the VTAB performance. Currently we used 15 of the 19
datasets for VTAB, covering all the categories. More detailed information of each dataset can be found in Table 3.

Table 3. Datasets statistics. For the aircrafts, flowers and surface dataset, the original training set and validation set are combined following
the practice. Note datasets noted with * are not included in our experiments.

Benchmark Dataset Names Alias Domain Classes Training Test

19 Fine-grained

Stanford Dogs [30] dogs animals 120 12,000 8,580
CUB-Birds 200 [56] birds animals 200 5,994 5,794
Oxford Flowers [43] flowers plants 102 2,040 6,149
VegFru [19] vegfru plants 290 29,000 116,156
Herbarium 2019 [52] herbarium plants 683 31, 546 2,679
FGVC Aircrafts [38] aircrafts objects 100 6,667 3,333
Stanford Cars [32] cars objects 196 8,144 8,041
MIT Indoor-67 [50] mit67 scene 67 5,360 1,340
European Flood Depth [3] flood scene 2 3153 557
NWPU Resisc45 [7] resisc45 scene 45 25,200 6,300
Food-101 [6] food101 food 101 12,000 8,500
iFood [28] ifood food 251 118,475 11,994
Describable Textures [8] dtd texture 47 4,230 1,410
Open Surface-2500 [4] surface texture 23 48,875 8,625
Magnetic Tile [23] tile texture 5 1,008 336
Pneumonia [29] pneumonia medical 2 25,216 624
Malaria Cell Images [48] cell medical 2 20,668 6,890
BelgaLogos [25] logo logo 27 7,500 2,500
SemArt [15] semart art 26 18,174 3,208

DomainNet

Clipart clipart clipart 345 33,525 14,604
Real real real 345 120,906 52,041
Quickdraw quickdraw quickdraw 345 120,750 51,750
Painting painting painting 345 50,416 21,850
Inforgraph inforgraph inforgraph 345 36,023 15,582
Sketch sketch sketch 345 48,212 20,916

VTAB

Caltech101* [13] caltech101 natural - objects 101 3,060 6,084
SUN397* [58] sun397 natural - scene 397 73,257 26,032
Oxford Flowers [43] flowers natural - plants 102 2,040 6,149
CIFAR-100 [33] cifar100 natural - objects 100 50,000 10,000
SVHN [41] svhn natural - object 10 73,257 26,032
Oxford IIIT Pet [44] pets natural - animal 37 3,680 3,669
Describable Textures [8] dtd natural - texture 47 4,230 1,410
NWPU Resisc45 [7] resisc45 specialized - scene 45 25,200 6,300
EuroSAT [18] eurosat specialized - scene 10 20,250 6,750
Diabetic Rethinopathy [27] retinopathy specialized - medical 5 35,126 53,576
PatchCamelyon [55] pcam specialized - medical 2 262,145 32,769
CLEVR distance [24] clevr_dist structured 7 70,000 15,000
CLEVR counting [24] clevr_dist structured 8 70,000 15,000
Dmlab Frames* dmlab structured 6 65,550 22,628
dSprites orientation [39] dsprites_ori structured 40 663,552 73,728
dSprites location [39] desprites_loc structured 6 663,552 73,728
KITTI distance [16]* kitti_dist structured 4 7,481 7,518
Small NORB azimuth [34] smallnorb_elevation structured 18 24,300 24,300
Small NORB elevation [34] smallnorb_azimuth structured 9 24,300 24,300
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Models The TIMM and torchvision model zoo collected over 590 ImageNet pre-trained models in various architectures
and training recipes. We filtered out 409 models that can be fine-tuned with batch size 32 and evaluated the single image
inference latency of the 400+ models on single GPU. The scatter plot of latency and accuracy can be seen in Fig. 7(a). We
can identify the Pareto frontier models of the 400+ models, spanning the latency from 3 ms to 120 ms. We select 22 widely
used models that are near the Pareto Front curve, which covers a wide range of architecture families, including ReseNet [17],
DenseNet [21], MobileNet [20], EfficientNet [53], ViTs [11], Swin-T [36] and ConvNeXt [37]. The detailed statistics of the
selected 22 models can be seen in Table 4.
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Figure 7. The statistics of the 500+ ImageNet pre-trained models. The latency is measured on V100 GPU with batch size 1. The dashed line
connects the Pareto frontier models. The blue crossed models are our selected 22 models and the red crossed dot is the reference model -
DenseNet-169.

Table 4. The statistics of the 22 models, which are ranked by their single image inference latency (ms) on the V100 GPU.

Model Name Arch Family Acc Pretrain Img Size Latency FLOPs #Params

1 resnet18 resnet 69.74 IN-1K 224 3.78 1.82 11.69
2 mobilenet_v2 mobilenet 71.88 IN-1K 224 7.33 0.31 3.50
3 mixer_b16_224 others 76.61 IN-1K 224 9.10 12.62 59.88
4 mixer_b16_224_in21k others - IN-21K 224 9.10 12.62 59.88
5 wide_resnet50_2 resnet 81.45 IN-1K 224 9.94 11.43 68.88
6 convnext_tiny convnext 82.06 IN-1K 224 10.63 4.47 28.59
7 vit_small_patch16_224 vit 81.40 IN-1K 224 11.71 4.61 22.05
8 vit_small_patch16_384 vit 83.81 IN-1K 384 11.88 15.52 22.2
9 vit_base_patch16_224 vit 84.53 IN-1K 224 11.88 17.58 86.57

10 vit_base_patch16_224_in22k vit - IN-21K 224 11.88 17.58 86.57
11 resmlp_24_224 others 79.38 IN-1K 224 12.67 5.96 30.02
12 efficientnet_b0 efficientnet 76.30 IN-1K 224 15.06 0.40 5.29
13 resnet101 resnet 81.93 IN-1K 224 17.48 7.83 44.55
14 convnext_base convnext 83.82 IN-1K 224 19.68 15.38 88.59
15 convnext_base_in22ft1k convnext 85.80 IN-21K-1K 224 19.60 14.38 88.59
16 gmixer_24_224 others 78.04 IN-1K 224 19.74 5.28 24.72
17 convnext_small convnext 83.13 IN-1K 224 19.80 8.70 50.22
18 efficientnet_b3 efficientnet 81.10 IN-1K 300 24.27 2.01 12.23
19 densenet121 densenet 75.58 IN-1K 224 25.73 2.87 7.98
20 swin_base_patch4_window7_224 swin 85.25 IN-1K 224 31.90 15.47 87.77
21 swin_base_patch4_window7_224_in22k swin - IN-21K 224 31.90 15.47 87.77
22 densenet169 densenet 75.90 IN-1K 224 36.13 3.40 14.15

Fine-tuning Hyperparameters All models are trained with a single GPU with the same settings with the hyperparameter
search ranges. We performed fine-tuning with following hyper-parameters: we fine-tune 30 epochs with SGD with Nesterov
momentum 0.9, batch size of 32 and weight decay of 10−4. The learning rate η decays by 0.1× at 15th and 25th epochs. We per-
formed a grid search of with various initial learning rates and data augmentation strategies, i.e., η0 ∈ {0.05, 0.01, 0.005, 0.001}
and data_aug ∈ {rrcrop,rcrop}. Here rrcrop stands for random resized cropping, which randomly crops ratio ranging
from 0.08 to 1.0 with random aspect ratio between [3/4, 4/3], which is adopted in [51]. And rcrop stands for random
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cropping, which differs with with rrcrop in that it uses fixed cropping ratio (0.875). We report the best top-1 test accuracy
of the 8 trials.

B. Feature-Based Model Selection
More Model Selection Failure Cases In additional to the model selection results on the 19 fine-grained datasets (Fig. 2 in
Sec. 2.2, here we show the MS results on DomainNet and VTAB in Fig. 8. The feature-based MS methods perform relatively
well on DomainNet datasets (clipart, infograph, painting, quickdraw, real, and sketch). However, the MS methods have weak
or even negative correlations for some of the VTAB tasks. For example, the structured tasks including smallnorb, clevr and
dsprites. Even the simple task SVHN has negative correlations, which indicates that the feature-based MS methods can fail to
estimate the relative performance with only feature information.
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Figure 8. Comparison of MS methods on DomainNet and VTAB. The first 6 datasets (clipart, infograph, painting, quickdraw, real, and
sketch) are from DomainNet, and the rest of the datasets are from VTAB.

Dataset Sampling For feature-based MS on ImageNet, we sample 2,000 images from the ImageNet training set, with the
number of images per class set to 2. We use the fixed sub-sampled prob set for evaluating all models. For MS on downstream
tasks, we sample at most 2,000 images with the constraint that no class has more than 25 images.

C. Model Recommendation
Feature Embedding Table 5 lists the details of the features used in learning based MS. The categorical features are converted
to one-hot vectors. And all features are normalized with their minimum and maximum values across all datasets, so that the
maximums and minimum values are 1 and 0 after normalization. The visualization of the real embedding of all available
fine-tuning tasks can be seen in Fig 9.

Training Details We implement the LR and FM algorithms with the xlearn library. The regression models with MAE loss
are trained with SGD until the loss converges. The initial learning rate is 0.2 and the regularization λ is 0.002. Instance-wise
normalization is disabled.

D. Heterogeneous Model Zoo and Architecture Bias
The existence of inductive bias for different architectures indicates that there is no single best architecture for all tasks with

different characteristics. Our hypothesis is that the optimal architecture for transfer learning is task dependent. To verify this,
we perform experiments with diverse datasets and architectures. We identify the existence of architecture bias for different
datasets, which confirms the need of task dependent architecture selection. Fig 10 shows the fine-tuning performance of the 22
models on 40 downstream tasks, from which we can see the ranking of the model for each task can be significantly different. It
also demonstrates that the best performing model can be task dependent.
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Table 5. The complete features for embedding fine-tuning tasks for learning-based MS.

Field idx Field Name Feature Name Type One-hot Log Dimension Min Max

1 dataset dataset id category Yes No 41 0 40
1 dataset dataset size scalar No Yes 1 1008 1200000
1 dataset number of classes scalar No Yes 1 2 1000
2 model architecture id category Yes No 500 0 409
2 model architecture family id category Yes No 10 0 9
2 model pre-trained dataset id category Yes No 3 0 2
2 model input size scalar No Yes 1 106 448
2 model GMACs (G) scalar No Yes 1 0.03 46.95
2 model #Parameters (G) scalar No Yes 1 1.88 88.59
3 MS score LFC scalar No No 1 0.002 0.792
3 MS score LogME scalar No No 1 -0.905 2.209
3 MS score PARC scalar No No 1 0.085 80.358

ImageNet x 409 models

6 DomainNet tasks x 22 models

19 fine-grained tasks x 22 models

16 VTAB tasks x 22 models

Figure 9. Visualization of the normalized feature embedding of all training jobs, including 400+ ImageNet training jobs, 418 training jobs on
the 19 fine-grained tasks, 132 training jobs on 6 DomainNet datasets and 352 training jobs on the VTAB datasets.

D.1. Architecture bias

Given a task and a set of well pre-trained models in different architectures, we say there is an architecture bias for a task if
one architecture obtains the best performance and outperforms the second best architecture by a large margin (e.g., > 2% top-1
accuracy). To justify the significance of architecture bias, we show the following facts for each benchmark: a) the performance
distribution of each architecture over a baseline model across all downstream tasks. b) the performance gain of the best model
over the second best performing model for each task. Fig. 11 ranks the models by their mean performance, from which we can
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Figure 10. The performance of different architectures on the 19 fine-grained datasets, DomainNet and VTAB. The best performing
architecture for different tasks can be different, For example, EfficientNet-B3 with higher resolution input performs best on aircrafts,
herbarium and smallnorb_azimuth; Swin-B/16 wins on surface, texture (DTD) and semart.

see ConvNeXt, ViTs, Swin-T, EfficientNet are top ranked models in terms of average performance gain over DenseNet-169.
Note that although ConvNeXt has the strongest average performance, it is not always the best for all tasks. Other architectures
can outperform ConvNeXt significantly for datasets like aircrafts, magnetictile, herbarium, dogs, indicating the existence
of architecture bias for those datasets. Similarly, we observe stronger architecture bias on structured tasks in VTAB, such
as smallnorb elevation and clevr count. For DomainNet, we find ConvNeXt with ImageNet-22K pre-training performs best
on 5 out of 6 domains (e.g., clipart, inforgraph, painting) with significant performance gains over DenseNet169 (> 6%).
However, the best performing architecture on quickdraw is Swin-T and the differences among the architectures are small
(<1%) (Fig. 12c).

Table 6. The Wilcoxon signed-rank test on whether the row model is significantly better than the column model on the 19 fine-grained tasks.
The table shows the p-value. The bold values indicate that the row model is statistically better than the column model (p < 0.05). No model
is statistically better than all other models.

ViT-S/16-384 Swin-B-P4-W7-in22k Swin-B-P4-W7 Efficientnet-B3 ViT-B/16-224-in21k
ConvNeXt-B-in22ft1k 0.492 0.384 0.198 0.084 0.003
ViT-S/16-384 - 0.147 0.072 0.107 0.002
Swin-B-P4-W7-in22k 0.862 - 0.098 0.121 0.003
Swin-B-P4-W7 0.928 0.909 - 0.156 0.016
Efficientnet-B3 0.893 0.887 0.853 - 0.779

Statistical Test We have empirically verified the hypothesis that the optimal architecture for transfer learning is task
dependent and there is no single best model that performs best on every datasets. Here we performed statistical tests for
the hypothesis. We conduct non-parametric paired one-tailed t-test (the Wilcoxon signed-rank test) on whether the selected
model’s performance is greater than other fine-tuning methods across 19 fine-tuning tasks. The null hypothesis H0 states that
the mean performance difference between selected model and baseline model is zero. The alternative hypothesis H1 states
that the selected model outperforms the baseline model. We pick the top 6 models with the best average performance on the
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Figure 11. The significance of architecture bias on the three benchmarks. The first column shows the performance gain over DenseNet-169
on downstream tasks for each model. The models are ranked by their mean accuracy gain. The second column shows the performance gain
of the optimal model over the second best performing model for each dataset.

19 fine-grained tasks (Fig. 11) and check whether any of them can be significantly better than others. Table 6 presents the
p-values of each test, with the number of observations equal to 19 for each model compared. There is no single model that
outperforms all other models.

D.2. Why do certain models work well on certain datasets?

We investigate the reason why certain models perform better on certain datasets than others. As shown in Fig. 11, the top 4
best performing models are ConvNeXt-B-in22ft1k, Efficientnet-B3, ViT-S/16-384 and Swin-B-in22k. Here we analyze why
they are chosen for certain tasks and what distinguish them from other models.

• ConvNeXt-B-in22ft1k performs best on many downstream tasks, such as birds [56] and food101 [6]. One reason is that this
model is obtained with strong pre-training on ImageNet-22k and then fine-tuned on ImageNet-1K, giving a bias towards
datasets that are close to ImageNet.

• Efficientnet-B3 [53] is chosen over ConvNeXt for aircrafts. Note that EfficientNet-B3 adopts a higher resolution for input
images (300 instead of 224). Dataset such as aircrafts benefits from the high resolution to make the subtle differences
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Figure 12. The Pareto front models for birds, aircrafts and DomainNet-quickdraw. ConvNeXt, EfficientNet-B3 and Swin-T are the best
performing models and have large margin over the other architectures.

noticeable. EfficientNet-B3 also has significant better performance on structured tasks such as smallnorb and clevr in
VTAB, which are synthetic 3D objects tasks such as counting and angle estimation. Similar observation is also made
in [61] that structured tasks behaves differently with nature images.

• Swin-B [36] performs best on quickdraw (Fig. 12(c)), which has no color or texture information but only shapes. It suggests
that Swin-T has the advantage of capturing the structure information. However the task is so simple the architecture bias or
pre-training makes not too much on performance difference (the difference between ResNet-18 and the wining Swin-T is
only 2%). Similarly previous work [62] finds that ViTs are better than CNNs on this task, and conclude that ViTs are better
preserving shape and structure information.

D.3. More Pareto front results

We have shown that the optimal model is dataset dependent. A natural question to ask is that whether the Pareto front
models for ImageNet continue to be on the Pareto frontier for other downstream tasks. Similar to Fig. 7(a), we plot the scatter
plot of latency and performance for three datasests in Fig 12 and show more results in Fig. 13. We can see that the Pareto
frontier models are actually task dependent, which suggests the need to perform dataset dependent search.
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Figure 13. The Pareto front models can be task dependent.
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